Лейцин, структурная формула, химические свойства
1
H
1,008
1s1
2,1
Бесцветный газ
t°пл=-259°C
t°кип=-253°C
2
He
4,0026
1s2
4,5
Бесцветный газ
t°кип=-269°C
3
Li
6,941
2s1
0,99
Мягкий серебристо-белый металл
t°пл=180°C
t°кип=1317°C
4
Be
9,0122
2s2
1,57
Светло-серый металл
t°пл=1278°C
t°кип=2970°C
5
B
10,811
2s2 2p1
2,04
Темно-коричневое аморфное вещество
t°пл=2300°C
t°кип=2550°C
6
C
12,011
2s2 2p2
2,55
Прозрачный (алмаз) / черный (графит) минерал
t°пл=3550°C
t°кип=4830°C
7
N
14,007
2s2 2p3
3,04
Бесцветный газ
t°пл=-210°C
t°кип=-196°C
8
O
15,999
2s2 2p4
3,44
Бесцветный газ
t°пл=-218°C
t°кип=-183°C
9
F
18,998
2s2 2p5
3,98
Бледно-желтый газ
t°пл=-220°C
t°кип=-188°C
10
Ne
20,180
2s2 2p6
4,4
Бесцветный газ
t°пл
t°кип=-246°C
11
Na
22,990
3s1
0,98
Мягкий серебристо-белый металл
t°пл=98°C
t°кип=892°C
12
Mg
24,305
3s2
1,31
Серебристо-белый металл
t°пл=649°C
t°кип=1107°C
13
Al
26,982
3s2 3p1
1,61
Серебристо-белый металл
t°пл=660°C
t°кип=2467°C
14
Si
28,086
3s2 3p2
1,9
Коричневый порошок / минерал
t°пл=1410°C
t°кип=2355°C
15
P
30,974
3s2 3p3
2,2
Белый минерал / красный порошок
t°пл=44°C
t°кип=280°C
16
S
32,065
3s2 3p4
2,58
Светло-желтый порошок
t°пл=113°C
t°кип=445°C
17
Cl
35,453
3s2 3p5
3,16
Желтовато-зеленый газ
t°пл=-101°C
t°кип=-35°C
18
Ar
39,948
3s2
4,3
Бесцветный газ
t°пл=-189°C
t°кип=-186°C
19
K
39,098
4s1
0,82
Мягкий серебристо-белый металл
t°пл=64°C
t°кип=774°C
20
Ca
40,078
4s2
1,0
Серебристо-белый металл
t°пл=839°C
t°кип=1487°C
21
Sc
44,956
3d1 4s2
1,36
Серебристый металл с желтым отливом
t°пл=1539°C
t°кип=2832°C
22
Ti
3d2 4s2
1,54
Серебристо-белый металл
t°пл=1660°C
t°кип=3260°C
23
V
50,942
3d3 4s2
1,63
Серебристо-белый металл
t°пл=1890°C
t°кип=3380°C
24
Cr
51,996
3d5 4s1
1,66
Голубовато-белый металл
t°пл=1857°C
t°кип=2482°C
25
Mn
54,938
3d5 4s2
1,55
Хрупкий серебристо-белый металл
t°пл=1244°C
t°кип=2097°C
26
Fe
55,845
3d6 4s2
1,83
Серебристо-белый металл
t°пл=1535°C
t°кип=2750°C
27
Co
58,933
3d7 4s2
1,88
Серебристо-белый металл
t°пл=1495°C
t°кип=2870°C
28
Ni
58,693
3d8 4s2
1,91
Серебристо-белый металл
t°пл=1453°C
t°кип=2732°C
29
Cu
63,546
3d10 4s1
1,9
Золотисто-розовый металл
t°пл=1084°C
t°кип=2595°C
30
Zn
65,409
3d10 4s2
1,65
Голубовато-белый металл
t°пл=420°C
t°кип=907°C
31
Ga
69,723
4s2 4p1
1,81
Белый металл с голубоватым оттенком
t°пл=30°C
t°кип=2403°C
32
Ge
72,64
4s2 4p2
2,0
Светло-серый полуметалл
t°пл=937°C
t°кип=2830°C
33
As
74,922
4s2 4p3
2,18
Зеленоватый полуметалл
t°
(сублимация)
34
Se
78,96
4s2 4p4
2,55
Хрупкий черный минерал
t°пл=217°C
t°кип=685°C
35
Br
79,904
4s2 4p5
2,96
Красно-бурая едкая жидкость
t°пл=-7°C
t°кип=59°C
36
Kr
83,798
4s2 4p6
3,0
Бесцветный газ
t°пл=-157°C
t°кип=-152°C
37
Rb
85,468
5s1
0,82
Серебристо-белый металл
t°пл=39°C
t°кип=688°C
38
Sr
87,62
5s2
0,95
Серебристо-белый металл
t°пл=769°C
t°кип=1384°C
39
Y
88,906
4d1 5s2
1,22
Серебристо-белый металл
t°пл=1523°C
t°кип=3337°C
40
Zr
91,224
4d2 5s2
1,33
Серебристо-белый металл
t°пл=1852°C
t°кип=4377°C
41
Nb
92,906
4d4 5s1
1,6
Блестящий серебристый металл
t°пл=2468°C
t°кип=4927°C
42
Mo
95,94
4d5 5s1
2,16
Блестящий серебристый металл
t°пл=2617°C
t°кип=5560°C
43
Tc
98,906
4d6 5s1
1,9
Синтетический радиоактивный металл
t°пл=2172°C
t°кип=5030°C
44
Ru
101,07
4d7 5s1
2,2
Серебристо-белый металл
t°пл=2310°C
t°кип=3900°C
45
Rh
102,91
4d8 5s1
2,28
Серебристо-белый металл
t°пл=1966°C
t°кип=3727°C
46
Pd
106,42
4d10
2,2
Мягкий серебристо-белый металл
t°пл=1552°C
t°кип=3140°C
47
Ag
107,87
4d10 5s1
1,93
Серебристо-белый металл
t°пл=962°C
t°кип=2212°C
48
Cd
112,41
4d10 5s2
1,69
Серебристо-серый металл
t°пл=321°C
t°кип=765°C
49
In
114,82
5s2 5p1
1,78
Мягкий серебристо-белый металл
t°пл=156°C
t°кип=2080°C
50
Sn
118,71
5s2 5p2
1,96
Мягкий серебристо-белый металл
t°пл=232°C
t°кип=2270°C
51
Sb
121,76
5s2 5p3
2,05
Серебристо-белый полуметалл
t°пл=631°C
t°кип=1750°C
52
Te
127,60
5s2 5p4
2,1
Серебристый блестящий полуметалл
t°пл=450°C
53
I
126,90
5s2 5p5
2,66
Черно-серые кристаллы
t°пл=114°C
t°кип=184°C
54
Xe
131,29
5s2 5p6
2,6
Бесцветный газ
t°пл=-112°C
t°кип=-107°C
55
Cs
132,91
6s1
0,79
Мягкий серебристо-желтый металл
t°пл=28°C
t°кип=690°C
56
Ba
137,33
6s2
0,89
Серебристо-белый металл
t°пл=725°C
t°кип=1640°C
57
La
138,91
5d1 6s2
1,1
Серебристый металл
t°пл=920°C
t°кип=3454°C
58
Ce
140,12
f-элемент
Серебристый металл
t°пл=798°C
t°кип=3257°C
59
Pr
140,91
f-элемент
Серебристый металл
t°пл=931°C
t°кип=3212°C
60
Nd
144,24
f-элемент
Серебристый металл
t°пл=1010°C
t°кип=3127°C
61
Pm
146,92
f-элемент
Светло-серый радиоактивный металл
t°пл=1080°C
t°кип=2730°C
62
Sm
150,36
f-элемент
Серебристый металл
t°пл=1072°C
t°кип=1778°C
63
Eu
151,96
f-элемент
Серебристый металл
t°пл=822°C
t°кип=1597°C
64
Gd
157,25
f-элемент
Серебристый металл
t°пл=1311°C
t°кип=3233°C
65
Tb
158,93
f-элемент
Серебристый металл
t°пл=1360°C
t°кип=3041°C
66
Dy
162,50
f-элемент
Серебристый металл
t°пл=1409°C
t°кип=2335°C
67
Ho
164,93
f-элемент
Серебристый металл
t°пл=1470°C
t°кип=2720°C
68
Er
167,26
f-элемент
Серебристый металл
t°пл=1522°C
t°кип=2510°C
69
Tm
168,93
f-элемент
Серебристый металл
t°пл=1545°C
t°кип=1727°C
70
Yb
173,04
f-элемент
Серебристый металл
t°пл=824°C
t°кип=1193°C
71
Lu
174,96
f-элемент
Серебристый металл
t°пл=1656°C
t°кип=3315°C
72
Hf
178,49
5d2 6s2
Серебристый металл
t°пл=2150°C
t°кип=5400°C
73
Ta
180,95
5d3 6s2
Серый металл
t°пл=2996°C
t°кип=5425°C
74
W
183,84
5d4 6s2
2,36
Серый металл
t°пл=3407°C
t°кип=5927°C
75
Re
186,21
5d5 6s2
Серебристо-белый металл
t°пл=3180°C
t°кип=5873°C
76
Os
190,23
5d6 6s2
Серебристый металл с голубоватым оттенком
t°пл=3045°C
t°кип=5027°C
77
Ir
192,22
5d7 6s2
Серебристый металл
t°пл=2410°C
t°кип=4130°C
78
Pt
195,08
5d9 6s1
2,28
Мягкий серебристо-белый металл
t°пл=1772°C
t°кип=3827°C
79
Au
196,97
5d10 6s1
2,54
Мягкий блестящий желтый металл
t°пл=1064°C
t°кип=2940°C
80
Hg
200,59
5d10 6s2
2,0
Жидкий серебристо-белый металл
t°пл=-39°C
t°кип=357°C
81
Tl
204,38
6s2 6p1
Серебристый металл
t°пл=304°C
t°кип=1457°C
82
Pb
207,2
6s2 6p2
2,33
Серый металл с синеватым оттенком
t°пл=328°C
t°кип=1740°C
83
Bi
208,98
6s2 6p3
Блестящий серебристый металл
t°пл=271°C
t°кип=1560°C
84
Po
208,98
6s2 6p4
Мягкий серебристо-белый металл
t°пл=254°C
t°кип=962°C
85
At
209,98
6s2 6p5
2,2
Нестабильный элемент, отсутствует в природе
t°пл=302°C
t°кип=337°C
86
Rn
222,02
6s2 6p6
2,2
Радиоактивный газ
t°пл=-71°C
t°кип=-62°C
87
Fr
223,02
7s1
0,7
Нестабильный элемент, отсутствует в природе
t°пл=27°C
t°кип=677°C
88
Ra
226,03
7s2
0,9
Серебристо-белый радиоактивный металл
t°пл=700°C
t°кип=1140°C
89
Ac
227,03
6d1 7s2
1,1
Серебристо-белый радиоактивный металл
t°пл=1047°C
t°кип=3197°C
90
Th
232,04
f-элемент
Серый мягкий металл
91
Pa
231,04
f-элемент
Серебристо-белый радиоактивный металл
92
U
238,03
f-элемент
1,38
Серебристо-белый металл
t°пл=1132°C
t°кип=3818°C
93
Np
237,05
f-элемент
Серебристо-белый радиоактивный металл
94
Pu
244,06
f-элемент
Серебристо-белый радиоактивный металл
95
Am
243,06
f-элемент
Серебристо-белый радиоактивный металл
96
Cm
247,07
f-элемент
Серебристо-белый радиоактивный металл
97
Bk
247,07
f-элемент
Серебристо-белый радиоактивный металл
98
Cf
251,08
f-элемент
Нестабильный элемент, отсутствует в природе
99
Es
252,08
f-элемент
Нестабильный элемент, отсутствует в природе
100
Fm
257,10
f-элемент
Нестабильный элемент, отсутствует в природе
101
Md
258,10
f-элемент
Нестабильный элемент, отсутствует в природе
102
No
259,10
f-элемент
Нестабильный элемент, отсутствует в природе
103
Lr
266
f-элемент
Нестабильный элемент, отсутствует в природе
104
Rf
267
6d2 7s2
Нестабильный элемент, отсутствует в природе
105
Db
268
6d3 7s2
Нестабильный элемент, отсутствует в природе
106
Sg
269
6d4 7s2
Нестабильный элемент, отсутствует в природе
107
Bh
270
6d5 7s2
Нестабильный элемент, отсутствует в природе
108
Hs
277
6d6 7s2
Нестабильный элемент, отсутствует в природе
109
Mt
278
6d7 7s2
Нестабильный элемент, отсутствует в природе
110
Ds
281
6d9 7s1
Нестабильный элемент, отсутствует в природе
Металлы
Неметаллы
Щелочные
Щелоч-зем
Благородные
Галогены
Халькогены
Полуметаллы
s-элементы
p-элементы
d-элементы
f-элементы
Наведите курсор на ячейку элемента, чтобы получить его краткое описание.
Чтобы получить подробное описание элемента, кликните по его названию.
Изолейцин, структурная формула, химические свойства
1
H
1,008
1s1
2,1
Бесцветный газ
t°пл=-259°C
t°кип=-253°C
2
He
4,0026
1s2
4,5
Бесцветный газ
t°кип=-269°C
3
Li
6,941
2s1
0,99
Мягкий серебристо-белый металл
t°пл=180°C
t°кип=1317°C
4
Be
9,0122
2s2
1,57
Светло-серый металл
t°пл=1278°C
t°кип=2970°C
5
B
10,811
2s2 2p1
2,04
Темно-коричневое аморфное вещество
t°пл=2300°C
t°кип=2550°C
6
C
12,011
2s2 2p2
2,55
Прозрачный (алмаз) / черный (графит) минерал
t°пл=3550°C
t°кип=4830°C
7
N
14,007
2s2 2p3
3,04
Бесцветный газ
t°пл=-210°C
t°кип=-196°C
8
O
15,999
2s2 2p4
3,44
Бесцветный газ
t°пл=-218°C
t°кип=-183°C
9
F
18,998
2s2 2p5
3,98
Бледно-желтый газ
t°пл=-220°C
t°кип=-188°C
10
Ne
20,180
2s2 2p6
4,4
Бесцветный газ
t°пл=-249°C
t°кип=-246°C
11
Na
22,990
3s1
0,98
Мягкий серебристо-белый металл
t°пл=98°C
t°кип=892°C
12
Mg
24,305
3s2
1,31
Серебристо-белый металл
t°пл=649°C
t°кип=1107°C
13
Al
26,982
3s2 3p1
1,61
Серебристо-белый металл
t°пл=660°C
t°кип=2467°C
14
Si
28,086
3s2 3p2
1,9
Коричневый порошок / минерал
t°пл=1410°C
t°кип=2355°C
15
P
30,974
3s2 3p3
2,2
Белый минерал / красный порошок
t°пл=44°C
t°кип=280°C
16
S
32,065
3s2 3p4
2,58
Светло-желтый порошок
t°пл=113°C
t°кип=445°C
17
Cl
35,453
3s2 3p5
3,16
Желтовато-зеленый газ
t°пл=-101°C
t°кип=-35°C
18
Ar
39,948
3s2 3p6
4,3
Бесцветный газ
t°пл=-189°C
t°кип=-186°C
19
K
39,098
4s1
0,82
Мягкий серебристо-белый металл
t°пл=64°C
t°кип=774°C
20
Ca
40,078
4s2
1,0
Серебристо-белый металл
t°пл=839°C
t°кип=1487°C
21
Sc
44,956
3d1 4s2
1,36
Серебристый металл с желтым отливом
t°пл=1539°C
t°кип=2832°C
22
Ti
47,867
3d2 4s2
1,54
Серебристо-белый металл
t°пл=1660°C
t°кип=3260°C
23
V
50,942
3d3 4s2
1,63
Серебристо-белый металл
t°пл=1890°C
t°кип=3380°C
24
Cr
51,996
3d5 4s1
1,66
Голубовато-белый металл
t°пл=1857°C
t°кип=2482°C
25
Mn
54,938
3d5 4s2
1,55
Хрупкий серебристо-белый металл
t°пл=1244°C
t°кип=2097°C
26
Fe
55,845
3d6 4s2
1,83
Серебристо-белый металл
t°пл=1535°C
t°кип=2750°C
27
Co
58,933
3d7 4s2
1,88
Серебристо-белый металл
t°пл=1495°C
t°кип=2870°C
28
Ni
58,693
3d8 4s2
1,91
Серебристо-белый металл
t°пл=1453°C
t°кип=2732°C
29
Cu
63,546
3d10 4s1
1,9
Золотисто-розовый металл
t°пл=1084°C
t°кип=2595°C
30
Zn
65,409
3d10 4s2
1,65
Голубовато-белый металл
t°пл=420°C
t°кип=907°C
31
Ga
69,723
4s2 4p1
1,81
Белый металл с голубоватым оттенком
t°пл=30°C
t°кип=2403°C
32
Ge
72,64
4s2 4p2
2,0
Светло-серый полуметалл
t°пл=937°C
t°кип=2830°C
33
As
74,922
4s2 4p3
2,18
Зеленоватый полуметалл
t°субл=613°C
(сублимация)
34
Se
78,96
4s2 4p4
2,55
Хрупкий черный минерал
t°пл=217°C
t°кип=685°C
35
Br
79,904
4s2 4p5
2,96
Красно-бурая едкая жидкость
t°пл=-7°C
t°кип=59°C
36
Kr
83,798
4s2 4p6
3,0
Бесцветный газ
t°пл=-157°C
t°кип=-152°C
37
Rb
85,468
5s1
0,82
Серебристо-белый металл
t°пл=39°C
t°кип=688°C
38
Sr
87,62
5s2
0,95
Серебристо-белый металл
t°пл=769°C
t°кип=1384°C
39
Y
88,906
4d1 5s2
1,22
Серебристо-белый металл
t°пл=1523°C
t°кип=3337°C
40
Zr
91,224
4d2 5s2
1,33
Серебристо-белый металл
t°пл=1852°C
t°кип=4377°C
41
Nb
92,906
4d4 5s1
1,6
Блестящий серебристый металл
t°пл=2468°C
t°кип=4927°C
42
Mo
95,94
4d5 5s1
2,16
Блестящий серебристый металл
t°пл=2617°C
t°кип=5560°C
43
Tc
98,906
4d6 5s1
1,9
Синтетический радиоактивный металл
t°пл=2172°C
t°кип=5030°C
44
Ru
101,07
4d7 5s1
2,2
Серебристо-белый металл
t°пл=2310°C
t°кип=3900°C
45
Rh
102,91
4d8 5s1
2,28
Серебристо-белый металл
t°пл=1966°C
t°кип=3727°C
46
Pd
106,42
4d10
2,2
Мягкий серебристо-белый металл
t°пл=1552°C
t°кип=3140°C
47
Ag
107,87
4d10 5s1
1,93
Серебристо-белый металл
t°пл=962°C
t°кип=2212°C
48
Cd
112,41
4d10 5s2
1,69
Серебристо-серый металл
t°пл=321°C
t°кип=765°C
49
In
114,82
5s2 5p1
1,78
Мягкий серебристо-белый металл
t°пл=156°C
t°кип=2080°C
50
Sn
118,71
5s2 5p2
1,96
Мягкий серебристо-белый металл
t°пл=232°C
t°кип=2270°C
51
Sb
121,76
5s2 5p3
2,05
Серебристо-белый полуметалл
t°пл=631°C
t°кип=1750°C
52
Te
127,60
5s2 5p4
2,1
Серебристый блестящий полуметалл
t°пл=450°C
t°кип=990°C
53
I
126,90
5s2 5p5
2,66
Черно-серые кристаллы
t°пл=114°C
t°кип=184°C
54
Xe
131,29
5s2 5p6
2,6
Бесцветный газ
t°пл=-112°C
t°кип=-107°C
55
Cs
132,91
6s1
0,79
Мягкий серебристо-желтый металл
t°пл=28°C
t°кип=690°C
56
Ba
137,33
6s2
0,89
Серебристо-белый металл
t°пл=725°C
t°кип=1640°C
57
La
138,91
5d1 6s2
1,1
Серебристый металл
t°пл=920°C
t°кип=3454°C
58
Ce
140,12
f-элемент
Серебристый металл
t°пл=798°C
t°кип=3257°C
59
Pr
140,91
f-элемент
Серебристый металл
t°пл=931°C
t°кип=3212°C
60
Nd
144,24
f-элемент
Серебристый металл
t°пл=1010°C
t°кип=3127°C
61
Pm
146,92
f-элемент
Светло-серый радиоактивный металл
t°пл=1080°C
t°кип=2730°C
62
Sm
150,36
f-элемент
Серебристый металл
t°пл=1072°C
t°кип=1778°C
63
Eu
151,96
f-элемент
Серебристый металл
t°пл=822°C
t°кип=1597°C
64
Gd
157,25
f-элемент
Серебристый металл
t°пл=1311°C
t°кип=3233°C
65
Tb
158,93
f-элемент
Серебристый металл
t°пл=1360°C
t°кип=3041°C
66
Dy
162,50
f-элемент
Серебристый металл
t°пл=1409°C
t°кип=2335°C
67
Ho
164,93
f-элемент
Серебристый металл
t°пл=1470°C
t°кип=2720°C
68
Er
167,26
f-элемент
Серебристый металл
t°пл=1522°C
t°кип=2510°C
69
Tm
168,93
f-элемент
Серебристый металл
t°пл=1545°C
t°кип=1727°C
70
Yb
173,04
f-элемент
Серебристый металл
t°пл=824°C
t°кип=1193°C
71
Lu
174,96
f-элемент
Серебристый металл
t°пл=1656°C
t°кип=3315°C
72
Hf
178,49
5d2 6s2
Серебристый металл
t°пл=2150°C
t°кип=5400°C
73
Ta
180,95
5d3 6s2
Серый металл
t°пл=2996°C
t°кип=5425°C
74
W
183,84
5d4 6s2
2,36
Серый металл
t°пл=3407°C
t°кип=5927°C
75
Re
186,21
5d5 6s2
Серебристо-белый металл
t°пл=3180°C
t°кип=5873°C
76
Os
190,23
5d6 6s2
Серебристый металл с голубоватым оттенком
t°пл=3045°C
t°кип=5027°C
77
Ir
192,22
5d7 6s2
Серебристый металл
t°пл=2410°C
t°кип=4130°C
78
Pt
195,08
5d9 6s1
2,28
Мягкий серебристо-белый металл
t°пл=1772°C
t°кип=3827°C
79
Au
196,97
5d10 6s1
2,54
Мягкий блестящий желтый металл
t°пл=1064°C
t°кип=2940°C
80
Hg
200,59
5d10 6s2
2,0
Жидкий серебристо-белый металл
t°пл=-39°C
t°кип=357°C
81
Tl
204,38
6s2 6p1
Серебристый металл
t°пл=304°C
t°кип=1457°C
82
Pb
207,2
6s2 6p2
2,33
Серый металл с синеватым оттенком
t°пл=328°C
t°кип=1740°C
83
Bi
208,98
6s2 6p3
Блестящий серебристый металл
t°пл=271°C
t°кип=1560°C
84
Po
208,98
6s2 6p4
Мягкий серебристо-белый металл
t°пл=254°C
t°кип=962°C
85
At
209,98
6s2 6p5
2,2
Нестабильный элемент, отсутствует в природе
t°пл=302°C
t°кип=337°C
86
Rn
222,02
6s2 6p6
2,2
Радиоактивный газ
t°пл=-71°C
t°кип=-62°C
87
Fr
223,02
7s1
0,7
Нестабильный элемент, отсутствует в природе
t°пл=27°C
t°кип=677°C
88
Ra
226,03
7s2
0,9
Серебристо-белый радиоактивный металл
t°пл=700°C
t°кип=1140°C
89
Ac
227,03
6d1 7s2
1,1
Серебристо-белый радиоактивный металл
t°пл=1047°C
t°кип=3197°C
90
Th
232,04
f-элемент
Серый мягкий металл
91
Pa
231,04
f-элемент
Серебристо-белый радиоактивный металл
92
U
238,03
f-элемент
1,38
Серебристо-белый металл
t°пл=1132°C
t°кип=3818°C
93
Np
237,05
f-элемент
Серебристо-белый радиоактивный металл
94
Pu
244,06
f-элемент
Серебристо-белый радиоактивный металл
95
Am
243,06
f-элемент
Серебристо-белый радиоактивный металл
96
Cm
247,07
f-элемент
Серебристо-белый радиоактивный металл
97
Bk
247,07
f-элемент
Серебристо-белый радиоактивный металл
98
Cf
251,08
f-элемент
Нестабильный элемент, отсутствует в природе
99
Es
252,08
f-элемент
Нестабильный элемент, отсутствует в природе
100
Fm
257,10
f-элемент
Нестабильный элемент, отсутствует в природе
101
Md
258,10
f-элемент
Нестабильный элемент, отсутствует в природе
102
No
259,10
f-элемент
Нестабильный элемент, отсутствует в природе
103
Lr
266
f-элемент
Нестабильный элемент, отсутствует в природе
104
Rf
267
6d2 7s2
Нестабильный элемент, отсутствует в природе
105
Db
268
6d3 7s2
Нестабильный элемент, отсутствует в природе
106
Sg
269
6d4 7s2
Нестабильный элемент, отсутствует в природе
107
Bh
270
6d5 7s2
Нестабильный элемент, отсутствует в природе
108
Hs
277
6d6 7s2
Нестабильный элемент, отсутствует в природе
109
Mt
278
6d7 7s2
Нестабильный элемент, отсутствует в природе
110
Ds
281
6d9 7s1
Нестабильный элемент, отсутствует в природе
Металлы
Неметаллы
Щелочные
Щелоч-зем
Благородные
Галогены
Халькогены
Полуметаллы
s-элементы
p-элементы
d-элементы
f-элементы
Наведите курсор на ячейку элемента, чтобы получить его краткое описание.
Чтобы получить подробное описание элемента, кликните по его названию.
2-амино-2-метилпентановая кислота, структурная формула, химические свойства
1
H
1,008
1s1
2,1
Бесцветный газ
t°пл=-259°C
t°кип=-253°C
2
He
4,0026
1s2
4,5
Бесцветный газ
t°кип=-269°C
3
Li
6,941
2s1
0,99
Мягкий серебристо-белый металл
t°пл=180°C
t°кип=1317°C
4
Be
9,0122
2s2
1,57
Светло-серый металл
t°пл=1278°C
t°кип=2970°C
5
B
10,811
2s2 2p1
2,04
Темно-коричневое аморфное вещество
t°пл=2300°C
t°кип=2550°C
6
C
12,011
2s2 2p2
2,55
Прозрачный (алмаз) / черный (графит) минерал
t°пл=3550°C
t°кип=4830°C
7
N
14,007
2s2 2p3
3,04
Бесцветный газ
t°пл=-210°C
t°кип=-196°C
8
O
15,999
2s2 2p4
3,44
Бесцветный газ
t°пл=-218°C
t°кип=-183°C
9
F
18,998
2s2 2p5
3,98
Бледно-желтый газ
t°пл=-220°C
t°кип=-188°C
10
Ne
20,180
2s2 2p6
4,4
Бесцветный газ
t°пл=-249°C
t°кип=-246°C
11
Na
22,990
3s1
0,98
Мягкий серебристо-белый металл
t°пл=98°C
t°кип=892°C
12
Mg
24,305
3s2
1,31
Серебристо-белый металл
t°пл=649°C
t°кип=1107°C
13
Al
26,982
3s2 3p1
1,61
Серебристо-белый металл
t°пл=660°C
t°кип=2467°C
14
Si
28,086
3s2 3p2
1,9
Коричневый порошок / минерал
t°пл=1410°C
t°кип=2355°C
15
P
30,974
3s2 3p3
2,2
Белый минерал / красный порошок
t°пл=44°C
t°кип=280°C
16
S
32,065
3s2 3p4
2,58
Светло-желтый порошок
t°пл=113°C
t°кип=445°C
17
Cl
35,453
3s2 3p5
3,16
Желтовато-зеленый газ
t°пл=-101°C
t°кип=-35°C
18
Ar
39,948
3s2 3p6
4,3
Бесцветный газ
t°пл=-189°C
t°кип=-186°C
19
K
39,098
4s1
0,82
Мягкий серебристо-белый металл
t°пл=64°C
t°кип=774°C
20
Ca
40,078
4s2
1,0
Серебристо-белый металл
t°пл=839°C
t°кип=1487°C
21
Sc
44,956
3d1 4s2
1,36
Серебристый металл с желтым отливом
t°пл=1539°C
t°кип=2832°C
22
Ti
47,867
3d2 4s2
1,54
Серебристо-белый металл
t°пл=1660°C
t°кип=3260°C
23
V
50,942
3d3 4s2
1,63
Серебристо-белый металл
t°пл=1890°C
t°кип=3380°C
24
Cr
51,996
3d5 4s1
1,66
Голубовато-белый металл
t°пл=1857°C
t°кип=2482°C
25
Mn
54,938
3d5 4s2
1,55
Хрупкий серебристо-белый металл
t°пл=1244°C
t°кип=2097°C
26
Fe
55,845
3d6 4s2
1,83
Серебристо-белый металл
t°пл=1535°C
t°кип=2750°C
27
Co
58,933
3d7 4s2
1,88
Серебристо-белый металл
t°пл=1495°C
t°кип=2870°C
28
Ni
58,693
3d8 4s2
1,91
Серебристо-белый металл
t°пл=1453°C
t°кип=2732°C
29
Cu
63,546
3d10 4s1
1,9
Золотисто-розовый металл
t°пл=1084°C
t°кип=2595°C
30
Zn
65,409
3d10 4s2
1,65
Голубовато-белый металл
t°пл=420°C
t°кип=907°C
31
Ga
69,723
4s2 4p1
1,81
Белый металл с голубоватым оттенком
t°пл=30°C
t°кип=2403°C
32
Ge
72,64
4s2 4p2
2,0
Светло-серый полуметалл
t°пл=937°C
t°кип=2830°C
33
As
74,922
4s2 4p3
2,18
Зеленоватый полуметалл
t°субл=613°C
(сублимация)
34
Se
78,96
4s2 4p4
2,55
Хрупкий черный минерал
t°пл=217°C
t°кип=685°C
35
Br
79,904
4s2 4p5
2,96
Красно-бурая едкая жидкость
t°пл=-7°C
t°кип=59°C
36
Kr
83,798
4s2 4p6
3,0
Бесцветный газ
t°пл=-157°C
t°кип=-152°C
37
Rb
85,468
5s1
0,82
Серебристо-белый металл
t°пл=39°C
t°кип=688°C
38
Sr
87,62
5s2
0,95
Серебристо-белый металл
t°пл=769°C
t°кип=1384°C
39
Y
88,906
4d1 5s2
1,22
Серебристо-белый металл
t°пл=1523°C
t°кип=3337°C
40
Zr
91,224
4d2 5s2
1,33
Серебристо-белый металл
t°пл=1852°C
t°кип=4377°C
41
Nb
92,906
4d4 5s1
1,6
Блестящий серебристый металл
t°пл=2468°C
t°кип=4927°C
42
Mo
95,94
4d5 5s1
2,16
Блестящий серебристый металл
t°пл=2617°C
t°кип=5560°C
43
Tc
98,906
4d6 5s1
1,9
Синтетический радиоактивный металл
t°пл=2172°C
t°кип=5030°C
44
Ru
101,07
4d7 5s1
2,2
Серебристо-белый металл
t°пл=2310°C
t°кип=3900°C
45
Rh
102,91
4d8 5s1
2,28
Серебристо-белый металл
t°пл=1966°C
t°кип=3727°C
46
Pd
106,42
4d10
2,2
Мягкий серебристо-белый металл
t°пл=1552°C
t°кип=3140°C
47
Ag
107,87
4d10 5s1
1,93
Серебристо-белый металл
t°пл=962°C
t°кип=2212°C
48
Cd
112,41
4d10 5s2
1,69
Серебристо-серый металл
t°пл=321°C
t°кип=765°C
49
In
114,82
5s2 5p1
1,78
Мягкий серебристо-белый металл
t°пл=156°C
t°кип=2080°C
50
Sn
118,71
5s2 5p2
1,96
Мягкий серебристо-белый металл
t°пл=232°C
t°кип=2270°C
51
Sb
121,76
5s2 5p3
2,05
Серебристо-белый полуметалл
t°пл=631°C
t°кип=1750°C
52
Te
127,60
5s2 5p4
2,1
Серебристый блестящий полуметалл
t°пл=450°C
t°кип=990°C
53
I
126,90
5s2 5p5
2,66
Черно-серые кристаллы
t°пл=114°C
t°кип=184°C
54
Xe
131,29
5s2 5p6
2,6
Бесцветный газ
t°пл=-112°C
t°кип=-107°C
55
Cs
132,91
6s1
0,79
Мягкий серебристо-желтый металл
t°пл=28°C
t°кип=690°C
56
Ba
137,33
6s2
0,89
Серебристо-белый металл
t°пл=725°C
t°кип=1640°C
57
La
138,91
5d1 6s2
1,1
Серебристый металл
t°пл=920°C
t°кип=3454°C
58
Ce
140,12
f-элемент
Серебристый металл
t°пл=798°C
t°кип=3257°C
59
Pr
140,91
f-элемент
Серебристый металл
t°пл=931°C
t°кип=3212°C
60
Nd
144,24
f-элемент
Серебристый металл
t°пл=1010°C
t°кип=3127°C
61
Pm
146,92
f-элемент
Светло-серый радиоактивный металл
t°пл=1080°C
t°кип=2730°C
62
Sm
150,36
f-элемент
Серебристый металл
t°пл=1072°C
t°кип=1778°C
63
Eu
151,96
f-элемент
Серебристый металл
t°пл=822°C
t°кип=1597°C
64
Gd
157,25
f-элемент
Серебристый металл
t°пл=1311°C
t°кип=3233°C
65
Tb
158,93
f-элемент
Серебристый металл
t°пл=1360°C
t°кип=3041°C
66
Dy
162,50
f-элемент
Серебристый металл
t°пл=1409°C
t°кип=2335°C
67
Ho
164,93
f-элемент
Серебристый металл
t°пл=1470°C
t°кип=2720°C
68
Er
167,26
f-элемент
Серебристый металл
t°пл=1522°C
t°кип=2510°C
69
Tm
168,93
f-элемент
Серебристый металл
t°пл=1545°C
t°кип=1727°C
70
Yb
173,04
f-элемент
Серебристый металл
t°пл=824°C
t°кип=1193°C
71
Lu
174,96
f-элемент
Серебристый металл
t°пл=1656°C
t°кип=3315°C
72
Hf
178,49
5d2 6s2
Серебристый металл
t°пл=2150°C
t°кип=5400°C
73
Ta
180,95
5d3 6s2
Серый металл
t°пл=2996°C
t°кип=5425°C
74
W
183,84
5d4 6s2
2,36
Серый металл
t°пл=3407°C
t°кип=5927°C
75
Re
186,21
5d5 6s2
Серебристо-белый металл
t°пл=3180°C
t°кип=5873°C
76
Os
190,23
5d6 6s2
Серебристый металл с голубоватым оттенком
t°пл=3045°C
t°кип=5027°C
77
Ir
192,22
5d7 6s2
Серебристый металл
t°пл=2410°C
t°кип=4130°C
78
Pt
195,08
5d9 6s1
2,28
Мягкий серебристо-белый металл
t°пл=1772°C
t°кип=3827°C
79
Au
196,97
5d10 6s1
2,54
Мягкий блестящий желтый металл
t°пл=1064°C
t°кип=2940°C
80
Hg
200,59
5d10 6s2
2,0
Жидкий серебристо-белый металл
t°пл=-39°C
t°кип=357°C
81
Tl
204,38
6s2 6p1
Серебристый металл
t°пл=304°C
t°кип=1457°C
82
Pb
207,2
6s2 6p2
2,33
Серый металл с синеватым оттенком
t°пл=328°C
t°кип=1740°C
83
Bi
208,98
6s2 6p3
Блестящий серебристый металл
t°пл=271°C
t°кип=1560°C
84
Po
208,98
6s2 6p4
Мягкий серебристо-белый металл
t°пл=254°C
t°кип=962°C
85
At
209,98
6s2 6p5
2,2
Нестабильный элемент, отсутствует в природе
t°пл=302°C
t°кип=337°C
86
Rn
222,02
6s2 6p6
2,2
Радиоактивный газ
t°пл=-71°C
t°кип=-62°C
87
Fr
223,02
7s1
0,7
Нестабильный элемент, отсутствует в природе
t°пл=27°C
t°кип=677°C
88
Ra
226,03
7s2
0,9
Серебристо-белый радиоактивный металл
t°пл=700°C
t°кип=1140°C
89
Ac
227,03
6d1 7s2
1,1
Серебристо-белый радиоактивный металл
t°пл=1047°C
t°кип=3197°C
90
Th
232,04
f-элемент
Серый мягкий металл
91
Pa
231,04
f-элемент
Серебристо-белый радиоактивный металл
92
U
238,03
f-элемент
1,38
Серебристо-белый металл
t°пл=1132°C
t°кип=3818°C
93
Np
237,05
f-элемент
Серебристо-белый радиоактивный металл
94
Pu
244,06
f-элемент
Серебристо-белый радиоактивный металл
95
Am
243,06
f-элемент
Серебристо-белый радиоактивный металл
96
Cm
247,07
f-элемент
Серебристо-белый радиоактивный металл
97
Bk
247,07
f-элемент
Серебристо-белый радиоактивный металл
98
Cf
251,08
f-элемент
Нестабильный элемент, отсутствует в природе
99
Es
252,08
f-элемент
Нестабильный элемент, отсутствует в природе
100
Fm
257,10
f-элемент
Нестабильный элемент, отсутствует в природе
101
Md
258,10
f-элемент
Нестабильный элемент, отсутствует в природе
102
No
259,10
f-элемент
Нестабильный элемент, отсутствует в природе
103
Lr
266
f-элемент
Нестабильный элемент, отсутствует в природе
104
Rf
267
6d2 7s2
Нестабильный элемент, отсутствует в природе
105
Db
268
6d3 7s2
Нестабильный элемент, отсутствует в природе
106
Sg
269
6d4 7s2
Нестабильный элемент, отсутствует в природе
107
Bh
270
6d5 7s2
Нестабильный элемент, отсутствует в природе
108
Hs
277
6d6 7s2
Нестабильный элемент, отсутствует в природе
109
Mt
278
6d7 7s2
Нестабильный элемент, отсутствует в природе
110
Ds
281
6d9 7s1
Нестабильный элемент, отсутствует в природе
Металлы
Неметаллы
Щелочные
Щелоч-зем
Благородные
Галогены
Халькогены
Полуметаллы
s-элементы
p-элементы
d-элементы
f-элементы
Наведите курсор на ячейку элемента, чтобы получить его краткое описание.
Чтобы получить подробное описание элемента, кликните по его названию.
3-амино-2,3-диметилбутановая кислота, структурная формула, свойства
1
H
1,008
1s1
2,1
Бесцветный газ
t°пл=-259°C
t°кип=-253°C
2
He
4,0026
1s2
4,5
Бесцветный газ
t°кип=-269°C
3
Li
6,941
2s1
0,99
Мягкий серебристо-белый металл
t°пл=180°C
t°кип=1317°C
4
Be
9,0122
2s2
1,57
Светло-серый металл
t°пл=1278°C
t°кип=2970°C
5
B
10,811
2s2 2p1
2,04
Темно-коричневое аморфное вещество
t°пл=2300°C
t°кип=2550°C
6
C
12,011
2s2 2p2
2,55
Прозрачный (алмаз) / черный (графит) минерал
t°пл=3550°C
t°кип=4830°C
7
N
14,007
2s2 2p3
3,04
Бесцветный газ
t°пл=-210°C
t°кип=-196°C
8
O
15,999
2s2 2p4
3,44
Бесцветный газ
t°пл=-218°C
t°кип=-183°C
9
F
18,998
2s2 2p5
3,98
Бледно-желтый газ
t°пл=-220°C
t°кип=-188°C
10
Ne
20,180
2s2 2p6
4,4
Бесцветный газ
t°пл=-249°C
t°кип=-246°C
11
Na
22,990
3s1
0,98
Мягкий серебристо-белый металл
t°пл=98°C
t°кип=892°C
12
Mg
24,305
3s2
1,31
Серебристо-белый металл
t°пл=649°C
t°кип=1107°C
13
Al
26,982
3s2 3p1
1,61
Серебристо-белый металл
t°пл=660°C
t°кип=2467°C
14
Si
28,086
3s2 3p2
1,9
Коричневый порошок / минерал
t°пл=1410°C
t°кип=2355°C
15
P
30,974
3s2 3p3
2,2
Белый минерал / красный порошок
t°пл=44°C
t°кип=280°C
16
S
32,065
3s2 3p4
2,58
Светло-желтый порошок
t°пл=113°C
t°кип=445°C
17
Cl
35,453
3s2 3p5
3,16
Желтовато-зеленый газ
t°пл=-101°C
t°кип=-35°C
18
Ar
39,948
3s2 3p6
4,3
Бесцветный газ
t°пл=-189°C
t°кип=-186°C
19
K
39,098
4s1
0,82
Мягкий серебристо-белый металл
t°пл=64°C
t°кип=774°C
20
Ca
40,078
4s2
1,0
Серебристо-белый металл
t°пл=839°C
t°кип=1487°C
21
Sc
44,956
3d1 4s2
1,36
Серебристый металл с желтым отливом
t°пл=1539°C
t°кип=2832°C
22
Ti
47,867
3d2 4s2
1,54
Серебристо-белый металл
t°пл=1660°C
t°кип=3260°C
23
V
50,942
3d3 4s2
1,63
Серебристо-белый металл
t°пл=1890°C
t°кип=3380°C
24
Cr
51,996
3d5 4s1
1,66
Голубовато-белый металл
t°пл=1857°C
t°кип=2482°C
25
Mn
54,938
3d5 4s2
1,55
Хрупкий серебристо-белый металл
t°пл=1244°C
t°кип=2097°C
26
Fe
55,845
3d6 4s2
1,83
Серебристо-белый металл
t°пл=1535°C
t°кип=2750°C
27
Co
58,933
3d7 4s2
1,88
Серебристо-белый металл
t°пл=1495°C
t°кип=2870°C
28
Ni
58,693
3d8 4s2
1,91
Серебристо-белый металл
t°пл=1453°C
t°кип=2732°C
29
Cu
63,546
3d10 4s1
1,9
Золотисто-розовый металл
t°пл=1084°C
t°кип=2595°C
30
Zn
65,409
3d10 4s2
1,65
Голубовато-белый металл
t°пл=420°C
t°кип=907°C
31
Ga
69,723
4s2 4p1
1,81
Белый металл с голубоватым оттенком
t°пл=30°C
t°кип=2403°C
32
Ge
72,64
4s2 4p2
2,0
Светло-серый полуметалл
t°пл=937°C
t°кип=2830°C
33
As
74,922
4s2 4p3
2,18
Зеленоватый полуметалл
t°субл=613°C
(сублимация)
34
Se
78,96
4s2 4p4
2,55
Хрупкий черный минерал
t°пл=217°C
t°кип=685°C
35
Br
79,904
4s2 4p5
2,96
Красно-бурая едкая жидкость
t°пл=-7°C
t°кип=59°C
36
Kr
83,798
4s2 4p6
3,0
Бесцветный газ
t°пл=-157°C
t°кип=-152°C
37
Rb
85,468
5s1
0,82
Серебристо-белый металл
t°пл=39°C
t°кип=688°C
38
Sr
87,62
5s2
0,95
Серебристо-белый металл
t°пл=769°C
t°кип=1384°C
39
Y
88,906
4d1 5s2
1,22
Серебристо-белый металл
t°пл=1523°C
t°кип=3337°C
40
Zr
91,224
4d2 5s2
1,33
Серебристо-белый металл
t°пл=1852°C
t°кип=4377°C
41
Nb
92,906
4d4 5s1
1,6
Блестящий серебристый металл
t°пл=2468°C
t°кип=4927°C
42
Mo
95,94
4d5 5s1
2,16
Блестящий серебристый металл
t°пл=2617°C
t°кип=5560°C
43
Tc
98,906
4d6 5s1
1,9
Синтетический радиоактивный металл
t°пл=2172°C
t°кип=5030°C
44
Ru
101,07
4d7 5s1
2,2
Серебристо-белый металл
t°пл=2310°C
t°кип=3900°C
45
Rh
102,91
4d8 5s1
2,28
Серебристо-белый металл
t°пл=1966°C
t°кип=3727°C
46
Pd
106,42
4d10
2,2
Мягкий серебристо-белый металл
t°пл=1552°C
t°кип=3140°C
47
Ag
107,87
4d10 5s1
1,93
Серебристо-белый металл
t°пл=962°C
t°кип=2212°C
48
Cd
112,41
4d10 5s2
1,69
Серебристо-серый металл
t°пл=321°C
t°кип=765°C
49
In
114,82
5s2 5p1
1,78
Мягкий серебристо-белый металл
t°пл=156°C
t°кип=2080°C
50
Sn
118,71
5s2 5p2
1,96
Мягкий серебристо-белый металл
t°пл=232°C
t°кип=2270°C
51
Sb
121,76
5s2 5p3
2,05
Серебристо-белый полуметалл
t°пл=631°C
t°кип=1750°C
52
Te
127,60
5s2 5p4
2,1
Серебристый блестящий полуметалл
t°пл=450°C
t°кип=990°C
53
I
126,90
5s2 5p5
2,66
Черно-серые кристаллы
t°пл=114°C
t°кип=184°C
54
Xe
131,29
5s2 5p6
2,6
Бесцветный газ
t°пл=-112°C
t°кип=-107°C
55
Cs
132,91
6s1
0,79
Мягкий серебристо-желтый металл
t°пл=28°C
t°кип=690°C
56
Ba
137,33
6s2
0,89
Серебристо-белый металл
t°пл=725°C
t°кип=1640°C
57
La
138,91
5d1 6s2
1,1
Серебристый металл
t°пл=920°C
t°кип=3454°C
58
Ce
140,12
f-элемент
Серебристый металл
t°пл=798°C
t°кип=3257°C
59
Pr
140,91
f-элемент
Серебристый металл
t°пл=931°C
t°кип=3212°C
60
Nd
144,24
f-элемент
Серебристый металл
t°пл=1010°C
t°кип=3127°C
61
Pm
146,92
f-элемент
Светло-серый радиоактивный металл
t°пл=1080°C
t°кип=2730°C
62
Sm
150,36
f-элемент
Серебристый металл
t°пл=1072°C
t°кип=1778°C
63
Eu
151,96
f-элемент
Серебристый металл
t°пл=822°C
t°кип=1597°C
64
Gd
157,25
f-элемент
Серебристый металл
t°пл=1311°C
t°кип=3233°C
65
Tb
158,93
f-элемент
Серебристый металл
t°пл=1360°C
t°кип=3041°C
66
Dy
162,50
f-элемент
Серебристый металл
t°пл=1409°C
t°кип=2335°C
67
Ho
164,93
f-элемент
Серебристый металл
t°пл=1470°C
t°кип=2720°C
68
Er
167,26
f-элемент
Серебристый металл
t°пл=1522°C
t°кип=2510°C
69
Tm
168,93
f-элемент
Серебристый металл
t°пл=1545°C
t°кип=1727°C
70
Yb
173,04
f-элемент
Серебристый металл
t°пл=824°C
t°кип=1193°C
71
Lu
174,96
f-элемент
Серебристый металл
t°пл=1656°C
t°кип=3315°C
72
Hf
178,49
5d2 6s2
Серебристый металл
t°пл=2150°C
t°кип=5400°C
73
Ta
180,95
5d3 6s2
Серый металл
t°пл=2996°C
t°кип=5425°C
74
W
183,84
5d4 6s2
2,36
Серый металл
t°пл=3407°C
t°кип=5927°C
75
Re
186,21
5d5 6s2
Серебристо-белый металл
t°пл=3180°C
t°кип=5873°C
76
Os
190,23
5d6 6s2
Серебристый металл с голубоватым оттенком
t°пл=3045°C
t°кип=5027°C
77
Ir
192,22
5d7 6s2
Серебристый металл
t°пл=2410°C
t°кип=4130°C
78
Pt
195,08
5d9 6s1
2,28
Мягкий серебристо-белый металл
t°пл=1772°C
t°кип=3827°C
79
Au
196,97
5d10 6s1
2,54
Мягкий блестящий желтый металл
t°пл=1064°C
t°кип=2940°C
80
Hg
200,59
5d10 6s2
2,0
Жидкий серебристо-белый металл
t°пл=-39°C
t°кип=357°C
81
Tl
204,38
6s2 6p1
Серебристый металл
t°пл=304°C
t°кип=1457°C
82
Pb
207,2
6s2 6p2
2,33
Серый металл с синеватым оттенком
t°пл=328°C
t°кип=1740°C
83
Bi
208,98
6s2 6p3
Блестящий серебристый металл
t°пл=271°C
t°кип=1560°C
84
Po
208,98
6s2 6p4
Мягкий серебристо-белый металл
t°пл=254°C
t°кип=962°C
85
At
209,98
6s2 6p5
2,2
Нестабильный элемент, отсутствует в природе
t°пл=302°C
t°кип=337°C
86
Rn
222,02
6s2 6p6
2,2
Радиоактивный газ
t°пл=-71°C
t°кип=-62°C
87
Fr
223,02
7s1
0,7
Нестабильный элемент, отсутствует в природе
t°пл=27°C
t°кип=677°C
88
Ra
226,03
7s2
0,9
Серебристо-белый радиоактивный металл
t°пл=700°C
t°кип=1140°C
89
Ac
227,03
6d1 7s2
1,1
Серебристо-белый радиоактивный металл
t°пл=1047°C
t°кип=3197°C
90
Th
232,04
f-элемент
Серый мягкий металл
91
Pa
231,04
f-элемент
Серебристо-белый радиоактивный металл
92
U
238,03
f-элемент
1,38
Серебристо-белый металл
t°пл=1132°C
t°кип=3818°C
93
Np
237,05
f-элемент
Серебристо-белый радиоактивный металл
94
Pu
244,06
f-элемент
Серебристо-белый радиоактивный металл
95
Am
243,06
f-элемент
Серебристо-белый радиоактивный металл
96
Cm
247,07
f-элемент
Серебристо-белый радиоактивный металл
97
Bk
247,07
f-элемент
Серебристо-белый радиоактивный металл
98
Cf
251,08
f-элемент
Нестабильный элемент, отсутствует в природе
99
Es
252,08
f-элемент
Нестабильный элемент, отсутствует в природе
100
Fm
257,10
f-элемент
Нестабильный элемент, отсутствует в природе
101
Md
258,10
f-элемент
Нестабильный элемент, отсутствует в природе
102
No
259,10
f-элемент
Нестабильный элемент, отсутствует в природе
103
Lr
266
f-элемент
Нестабильный элемент, отсутствует в природе
104
Rf
267
6d2 7s2
Нестабильный элемент, отсутствует в природе
105
Db
268
6d3 7s2
Нестабильный элемент, отсутствует в природе
106
Sg
269
6d4 7s2
Нестабильный элемент, отсутствует в природе
107
Bh
270
6d5 7s2
Нестабильный элемент, отсутствует в природе
108
Hs
277
6d6 7s2
Нестабильный элемент, отсутствует в природе
109
Mt
278
6d7 7s2
Нестабильный элемент, отсутствует в природе
110
Ds
281
6d9 7s1
Нестабильный элемент, отсутствует в природе
Металлы
Неметаллы
Щелочные
Щелоч-зем
Благородные
Галогены
Халькогены
Полуметаллы
s-элементы
p-элементы
d-элементы
f-элементы
Наведите курсор на ячейку элемента, чтобы получить его краткое описание.
Чтобы получить подробное описание элемента, кликните по его названию.
β-аминокапроновая кислота, структурная формула, химические свойства
1
H
1,008
1s1
2,1
Бесцветный газ
t°пл=-259°C
t°кип=-253°C
2
He
4,0026
1s2
4,5
Бесцветный газ
t°кип=-269°C
3
Li
6,941
2s1
0,99
Мягкий серебристо-белый металл
t°пл=180°C
t°кип=1317°C
4
Be
9,0122
2s2
1,57
Светло-серый металл
t°пл=1278°C
t°кип=2970°C
5
B
10,811
2s2 2p1
2,04
Темно-коричневое аморфное вещество
t°пл=2300°C
t°кип=2550°C
6
C
12,011
2s2 2p2
2,55
Прозрачный (алмаз) / черный (графит) минерал
t°пл=3550°C
t°кип=4830°C
7
N
14,007
2s2 2p3
3,04
Бесцветный газ
t°пл=-210°C
t°кип=-196°C
8
O
15,999
2s2 2p4
3,44
Бесцветный газ
t°пл=-218°C
t°кип=-183°C
9
F
18,998
2s2 2p5
3,98
Бледно-желтый газ
t°пл=-220°C
t°кип=-188°C
10
Ne
20,180
2s2 2p6
4,4
Бесцветный газ
t°пл=-249°C
t°кип=-246°C
11
Na
22,990
3s1
0,98
Мягкий серебристо-белый металл
t°пл=98°C
t°кип=892°C
12
Mg
24,305
3s2
1,31
Серебристо-белый металл
t°пл=649°C
t°кип=1107°C
13
Al
26,982
3s2 3p1
1,61
Серебристо-белый металл
t°пл=660°C
t°кип=2467°C
14
Si
28,086
3s2 3p2
1,9
Коричневый порошок / минерал
t°пл=1410°C
t°кип=2355°C
15
P
30,974
3s2 3p3
2,2
Белый минерал / красный порошок
t°пл=44°C
t°кип=280°C
16
S
32,065
3s2 3p4
2,58
Светло-желтый порошок
t°пл=113°C
t°кип=445°C
17
Cl
35,453
3s2 3p5
3,16
Желтовато-зеленый газ
t°пл=-101°C
t°кип=-35°C
18
Ar
39,948
3s2 3p6
4,3
Бесцветный газ
t°пл=-189°C
t°кип=-186°C
19
K
39,098
4s1
0,82
Мягкий серебристо-белый металл
t°пл=64°C
t°кип=774°C
20
Ca
40,078
4s2
1,0
Серебристо-белый металл
t°пл=839°C
t°кип=1487°C
21
Sc
44,956
3d1 4s2
1,36
Серебристый металл с желтым отливом
t°пл=1539°C
t°кип=2832°C
22
Ti
47,867
3d2 4s2
1,54
Серебристо-белый металл
t°пл=1660°C
t°кип=3260°C
23
V
50,942
3d3 4s2
1,63
Серебристо-белый металл
t°пл=1890°C
t°кип=3380°C
24
Cr
51,996
3d5 4s1
1,66
Голубовато-белый металл
t°пл=1857°C
t°кип=2482°C
25
Mn
54,938
3d5 4s2
1,55
Хрупкий серебристо-белый металл
t°пл=1244°C
t°кип=2097°C
26
Fe
55,845
3d6 4s2
1,83
Серебристо-белый металл
t°пл=1535°C
t°кип=2750°C
27
Co
58,933
3d7 4s2
1,88
Серебристо-белый металл
t°пл=1495°C
t°кип=2870°C
28
Ni
58,693
3d8 4s2
1,91
Серебристо-белый металл
t°пл=1453°C
t°кип=2732°C
29
Cu
63,546
3d10 4s1
1,9
Золотисто-розовый металл
t°пл=1084°C
t°кип=2595°C
30
Zn
65,409
3d10 4s2
1,65
Голубовато-белый металл
t°пл=420°C
t°кип=907°C
31
Ga
69,723
4s2 4p1
1,81
Белый металл с голубоватым оттенком
t°пл=30°C
t°кип=2403°C
32
Ge
72,64
4s2 4p2
2,0
Светло-серый полуметалл
t°пл=937°C
t°кип=2830°C
33
As
74,922
4s2 4p3
2,18
Зеленоватый полуметалл
t°субл=613°C
(сублимация)
34
Se
78,96
4s2 4p4
2,55
Хрупкий черный минерал
t°пл=217°C
t°кип=685°C
35
Br
79,904
4s2 4p5
2,96
Красно-бурая едкая жидкость
t°пл=-7°C
t°кип=59°C
36
Kr
83,798
4s2 4p6
3,0
Бесцветный газ
t°пл=-157°C
t°кип=-152°C
37
Rb
85,468
5s1
0,82
Серебристо-белый металл
t°пл=39°C
t°кип=688°C
38
Sr
87,62
5s2
0,95
Серебристо-белый металл
t°пл=769°C
t°кип=1384°C
39
Y
88,906
4d1 5s2
1,22
Серебристо-белый металл
t°пл=1523°C
t°кип=3337°C
40
Zr
91,224
4d2 5s2
1,33
Серебристо-белый металл
t°пл=1852°C
t°кип=4377°C
41
Nb
92,906
4d4 5s1
1,6
Блестящий серебристый металл
t°пл=2468°C
t°кип=4927°C
42
Mo
95,94
4d5 5s1
2,16
Блестящий серебристый металл
t°пл=2617°C
t°кип=5560°C
43
Tc
98,906
4d6 5s1
1,9
Синтетический радиоактивный металл
t°пл=2172°C
t°кип=5030°C
44
Ru
101,07
4d7 5s1
2,2
Серебристо-белый металл
t°пл=2310°C
t°кип=3900°C
45
Rh
102,91
4d8 5s1
2,28
Серебристо-белый металл
t°пл=1966°C
t°кип=3727°C
46
Pd
106,42
4d10
2,2
Мягкий серебристо-белый металл
t°пл=1552°C
t°кип=3140°C
47
Ag
107,87
4d10 5s1
1,93
Серебристо-белый металл
t°пл=962°C
t°кип=2212°C
48
Cd
112,41
4d10 5s2
1,69
Серебристо-серый металл
t°пл=321°C
t°кип=765°C
49
In
114,82
5s2 5p1
1,78
Мягкий серебристо-белый металл
t°пл=156°C
t°кип=2080°C
50
Sn
118,71
5s2 5p2
1,96
Мягкий серебристо-белый металл
t°пл=232°C
t°кип=2270°C
51
Sb
121,76
5s2 5p3
2,05
Серебристо-белый полуметалл
t°пл=631°C
t°кип=1750°C
52
Te
127,60
5s2 5p4
2,1
Серебристый блестящий полуметалл
t°пл=450°C
t°кип=990°C
53
I
126,90
5s2 5p5
2,66
Черно-серые кристаллы
t°пл=114°C
t°кип=184°C
54
Xe
131,29
5s2 5p6
2,6
Бесцветный газ
t°пл=-112°C
t°кип=-107°C
55
Cs
132,91
6s1
0,79
Мягкий серебристо-желтый металл
t°пл=28°C
t°кип=690°C
56
Ba
137,33
6s2
0,89
Серебристо-белый металл
t°пл=725°C
t°кип=1640°C
57
La
138,91
5d1 6s2
1,1
Серебристый металл
t°пл=920°C
t°кип=3454°C
58
Ce
140,12
f-элемент
Серебристый металл
t°пл=798°C
t°кип=3257°C
59
Pr
140,91
f-элемент
Серебристый металл
t°пл=931°C
t°кип=3212°C
60
Nd
144,24
f-элемент
Серебристый металл
t°пл=1010°C
t°кип=3127°C
61
Pm
146,92
f-элемент
Светло-серый радиоактивный металл
t°пл=1080°C
t°кип=2730°C
62
Sm
150,36
f-элемент
Серебристый металл
t°пл=1072°C
t°кип=1778°C
63
Eu
151,96
f-элемент
Серебристый металл
t°пл=822°C
t°кип=1597°C
64
Gd
157,25
f-элемент
Серебристый металл
t°пл=1311°C
t°кип=3233°C
65
Tb
158,93
f-элемент
Серебристый металл
t°пл=1360°C
t°кип=3041°C
66
Dy
162,50
f-элемент
Серебристый металл
t°пл=1409°C
t°кип=2335°C
67
Ho
164,93
f-элемент
Серебристый металл
t°пл=1470°C
t°кип=2720°C
68
Er
167,26
f-элемент
Серебристый металл
t°пл=1522°C
t°кип=2510°C
69
Tm
168,93
f-элемент
Серебристый металл
t°пл=1545°C
t°кип=1727°C
70
Yb
173,04
f-элемент
Серебристый металл
t°пл=824°C
t°кип=1193°C
71
Lu
174,96
f-элемент
Серебристый металл
t°пл=1656°C
t°кип=3315°C
72
Hf
178,49
5d2 6s2
Серебристый металл
t°пл=2150°C
t°кип=5400°C
73
Ta
180,95
5d3 6s2
Серый металл
t°пл=2996°C
t°кип=5425°C
74
W
183,84
5d4 6s2
2,36
Серый металл
t°пл=3407°C
t°кип=5927°C
75
Re
186,21
5d5 6s2
Серебристо-белый металл
t°пл=3180°C
t°кип=5873°C
76
Os
190,23
5d6 6s2
Серебристый металл с голубоватым оттенком
t°пл=3045°C
t°кип=5027°C
77
Ir
192,22
5d7 6s2
Серебристый металл
t°пл=2410°C
t°кип=4130°C
78
Pt
195,08
5d9 6s1
2,28
Мягкий серебристо-белый металл
t°пл=1772°C
t°кип=3827°C
79
Au
196,97
5d10 6s1
2,54
Мягкий блестящий желтый металл
t°пл=1064°C
t°кип=2940°C
80
Hg
200,59
5d10 6s2
2,0
Жидкий серебристо-белый металл
t°пл=-39°C
t°кип=357°C
81
Tl
204,38
6s2 6p1
Серебристый металл
t°пл=304°C
t°кип=1457°C
82
Pb
207,2
6s2 6p2
2,33
Серый металл с синеватым оттенком
t°пл=328°C
t°кип=1740°C
83
Bi
208,98
6s2 6p3
Блестящий серебристый металл
t°пл=271°C
t°кип=1560°C
84
Po
208,98
6s2 6p4
Мягкий серебристо-белый металл
t°пл=254°C
t°кип=962°C
85
At
209,98
6s2 6p5
2,2
Нестабильный элемент, отсутствует в природе
t°пл=302°C
t°кип=337°C
86
Rn
222,02
6s2 6p6
2,2
Радиоактивный газ
t°пл=-71°C
t°кип=-62°C
87
Fr
223,02
7s1
0,7
Нестабильный элемент, отсутствует в природе
t°пл=27°C
t°кип=677°C
88
Ra
226,03
7s2
0,9
Серебристо-белый радиоактивный металл
t°пл=700°C
t°кип=1140°C
89
Ac
227,03
6d1 7s2
1,1
Серебристо-белый радиоактивный металл
t°пл=1047°C
t°кип=3197°C
90
Th
232,04
f-элемент
Серый мягкий металл
91
Pa
231,04
f-элемент
Серебристо-белый радиоактивный металл
92
U
238,03
f-элемент
1,38
Серебристо-белый металл
t°пл=1132°C
t°кип=3818°C
93
Np
237,05
f-элемент
Серебристо-белый радиоактивный металл
94
Pu
244,06
f-элемент
Серебристо-белый радиоактивный металл
95
Am
243,06
f-элемент
Серебристо-белый радиоактивный металл
96
Cm
247,07
f-элемент
Серебристо-белый радиоактивный металл
97
Bk
247,07
f-элемент
Серебристо-белый радиоактивный металл
98
Cf
251,08
f-элемент
Нестабильный элемент, отсутствует в природе
99
Es
252,08
f-элемент
Нестабильный элемент, отсутствует в природе
100
Fm
257,10
f-элемент
Нестабильный элемент, отсутствует в природе
101
Md
258,10
f-элемент
Нестабильный элемент, отсутствует в природе
102
No
259,10
f-элемент
Нестабильный элемент, отсутствует в природе
103
Lr
266
f-элемент
Нестабильный элемент, отсутствует в природе
104
Rf
267
6d2 7s2
Нестабильный элемент, отсутствует в природе
105
Db
268
6d3 7s2
Нестабильный элемент, отсутствует в природе
106
Sg
269
6d4 7s2
Нестабильный элемент, отсутствует в природе
107
Bh
270
6d5 7s2
Нестабильный элемент, отсутствует в природе
108
Hs
277
6d6 7s2
Нестабильный элемент, отсутствует в природе
109
Mt
278
6d7 7s2
Нестабильный элемент, отсутствует в природе
110
Ds
281
6d9 7s1
Нестабильный элемент, отсутствует в природе
Металлы
Неметаллы
Щелочные
Щелоч-зем
Благородные
Галогены
Халькогены
Полуметаллы
s-элементы
p-элементы
d-элементы
f-элементы
Наведите курсор на ячейку элемента, чтобы получить его краткое описание.
Чтобы получить подробное описание элемента, кликните по его названию.
Структурная формула лейцина. Стоковая иллюстрация № 2723444, иллюстратор Владимир Федорчук / Фотобанк Лори
Корзина Купить!
Изображение помещёно в вашу корзину покупателя.Вы можете перейти в корзину для оплаты или продолжить выбор покупок.
Перейти в корзину…
удалить из корзины
Размеры в сантиметрах указаны для справки, и соответствуют печати с разрешением 300 dpi. Купленные файлы предоставляются в формате JPEG.
¹ Стандартная лицензия разрешает однократную публикацию изображения в интернете или в печати (тиражом до 250 тыс. экз.) в качестве иллюстрации к информационному материалу или обложки печатного издания, а также в рамках одной рекламной или промо-кампании в интернете;
² Расширенная лицензия разрешает прочие виды использования, в том числе в рекламе, упаковке, дизайне сайтов и так далее;
Подробнее об условиях лицензий
³ Лицензия Печать в частных целях разрешает использование изображения в дизайне частных интерьеров и для печати для личного использования тиражом не более пяти экземпляров.
* Пакеты изображений дают значительную экономию при покупке большого числа работ (подробнее)
Размер оригинала: 5907×3639 пикс. (21.5 Мп)
Указанная в таблице цена складывается из стоимости лицензии на использование изображения (75% полной стоимости) и стоимости услуг фотобанка (25% полной стоимости). Это разделение проявляется только в выставляемых счетах и в конечных документах (договорах, актах, реестрах), в остальном интерфейсе фотобанка всегда присутствуют полные суммы к оплате.
Внимание! Использование произведений из фотобанка возможно только после их покупки. Любое иное использование (в том числе в некоммерческих целях и со ссылкой на фотобанк) запрещено и преследуется по закону.
ЛЕЙЦИН
INCI Монография ID: 1502
CAS пп.
61-90-5 (L)
328-39-2 (DL-)
Эмпирическая формула: C6h23N02
Определение: Лейцин (от греческого leucos -белый) аминоизокапроновая кислота (алфа-аминоизобутилуксусная кислота). Существует в виде D- и L- изомеров. L- лейцин (моноаминомонокарбоновая кислота) составная часть всех белков.
Физические свойства. Очищенный лейцин существует в виде бесцветных кристаллов или в виде очень тонких пластин. Температура плавления/разложения – 294ОС; молекулярная масса 131,18. Плохо растворяется в воде.
Химический состав. Структурная формула лейцина:
СН3-СН(СН3)-СН2-СН(NН2)СООН.
Биологическая роль. Незаменимая аминокислота (1 из 8) – не синтезируется у человека и должна поступать с пищей. Это одна из трех аминокислот с разветвленной цепью (валин, лейцин, изолейцин – все они незаменимые). Вместе они творят чудеса. Они без изменения проходят через печень и поступают в ткани. В мышцах они используются не только как строительный материал, но и как энергетический субстрат вместо глюкозы, точнее из них образуется глюкоза, которая потом окисляется в цикле Крепса с выделением энергии. L- лейцин снижает уровень серотонина и отодвигает наступление усталости, он также стимулирует секрецию инсулина. Инсулин обеспечивает транспорт глюкозы и аминокислот в клетки. Поступление аминокислот усиливает синтез белка и рост клеток. Присутствие L- лейцина в крови в 10 раз эффективнее (в плане стимуляции анаболизма), чем присутствие любой другой аминокислоты. Механизм действия лейцина заключается в следующем. Повышение концентрации лейцина активирует некий анаболический рецептор, который передает сигнал о достаточном количестве строительного материала для синтеза новых мышечных белков. Этот же рецептор (обозначаемый как m TOR) чувствителен также к уровню АТФ. L- лейцин участвует в синтезе соматотропина (гормон роста), который обеспечивает рост скелета (костей, хрящей, связок) и мышц.
Источники L- лейцина. Как уже отмечалось выше, лейцин не синтезируется в организме человека, но его присутствие необходимо для жизнедеятельности организма, а потому его поступление с пищей просто жизненно необходимо. Если с пищей не поступает лейцин, белковый баланс не может быть положительным. Катаболизм превалирует над анаболизмом. Много лейцина содержат протеины бобов, орехов, богаты им протеины мяса, бурого риса, значительное его количество содержится в соевой и пшеничной муке.
Применение в косметике. Выше отмечалось, что L- лейцин инициирует процесс синтеза мышечных белков, а также соединительной ткани. Благодаря этому он регенерирует стареющую кожу, борется с морщинами, способен устранять дряблость кожи. Поэтому его используют везде, где требуется обеспечить упругость и эластичность кожи (в средствах для ухода за зоной декольте, в средствах от морщин и от растяжек, в продуктах для подтяжки кожи вокруг глаз и в области бюста), а также в препаратах для ускорения заживления ран. Он кроме того обладает увлажняющими свойствами.
НТД (Нормативно техническая документация)
Перечень.
1. Свидетельство о государственной регистрации № RU.77,11,003,Е004749.03.11 от 05.03.11г.
2. Сертификат анализа производителя “Qingdao Samin Chemical Co., LTD”
3. Сертификат анализа поставщика «Торговый дом Торгсин»
Зарегистрированы РПН. Документы предоставляются Заказчику по запросу при размещении заказа на изготовление косметической продукции.
Лейцин — Энциклопедия Нового Света
Лейцин | |
Систематическое (IUPAC) наименование | |
(S) -2-амино-4-метилпентановая кислота | |
Идентификаторы | |
Номер CAS | 61-90-5 |
PubChem | 6106 |
Химические данные | |
Формула | C 6 H 13 NO 2 |
Мол.масса | 131,18 |
УЛЫБКИ | CC (C) C [C @ H] (N) C (O) = O |
Полные данные |
Лейцин — это α-аминокислота, которая содержится в большинстве белков и незаменима в рационе человека. Он похож на изолейцин и валин в том, что является аминокислотой с разветвленной цепью и является изомером изолейцина. (Изомеры — это молекулы с одинаковой химической формулой и часто с одинаковыми видами химических связей между атомами, но в которых атомы расположены по-разному.)
В организме человека L-изомер лейцина является одной из 20 стандартных аминокислот, общих в белках животных и необходимых для нормального функционирования человека. Лейцин также классифицируется как «незаменимая аминокислота», поскольку он не может быть синтезирован человеческим организмом из других соединений посредством химических реакций, и поэтому его необходимо принимать с пищей.
Также, как изолейцин и валин, недостаток определенного фермента у людей может привести к накоплению лейцина в крови и моче, заболеванию, известному как болезнь мочи кленового сиропа (MSUD).В то время как важность дисциплинированной диеты важна для всех людей для получения незаменимых аминокислот и других питательных веществ, эта реальность особенно впечатляет тех, кто страдает MSUD. Таким людям необходимо получить необходимый минимальный уровень изолейцина, не потребляя слишком много, которое могло бы вызвать симптомы.
Точность и сложная координация во Вселенной проявляется в роли лейцина в белках. Структура лейцина, как и изолейцина, делает его важным для правильного сворачивания белков, функциональность которых зависит от способности складываться в точную трехмерную форму.Гармония среди живых организмов также наблюдается в том факте, что растения могут синтезировать лейцин, который затем может быть получен животными.
Трехбуквенный код лейцина — Leu, его однобуквенный код — L, его кодоны — UUA, UUG, CUU и CUC, а его систематическое название — 2-амино-4-метилпентановая кислота (IUPAC-IUB 1983).
Структура
В биохимии термин «аминокислота» часто используется для обозначения альфа-аминокислот — тех аминокислот, в которых амино- и карбоксилатные группы присоединены к одному и тому же атому углерода, так называемому альфа-углероду (альфа-углерод).Общая структура этих альфа-аминокислот:
р | H 2 N-C-COOH | ЧАС
, где R представляет собой боковую цепь , , специфичную для каждой аминокислоты.
Большинство аминокислот встречается в виде двух возможных оптических изомеров, называемых D и L. L-аминокислоты представляют собой подавляющее большинство аминокислот, содержащихся в белках. Их называют протеиногенными аминокислотами. Как следует из названия «протеиногенные» (буквально «построение белка»), эти аминокислоты кодируются стандартным генетическим кодом и участвуют в процессе синтеза белка.В лейцине только L-стереоизомер участвует в синтезе белков млекопитающих.
Химическая формула лейцина: (CH 3 ) 2 CH-CH 2 -CH (NH 2 ) -COOH (IUPAC-IUB 1983). Как изомеры, лейцин и изолейцин имеют общую формулу C 6 H 13 NO 2 .
Лейцин, как и изолейцин, и валин, имеет большие алифатические гидрофобные боковые цепи, что делает его гидрофобной аминокислотой. Его молекулы жесткие, и его взаимные гидрофобные взаимодействия важны для правильного сворачивания белков, поскольку эти цепи имеют тенденцию располагаться внутри молекулы белка.
Диетические аспекты
Как незаменимая аминокислота, лейцин не синтезируется у животных, поэтому его необходимо принимать внутрь, обычно как компонент белков.
Основные пищевые источники лейцина включают цельнозерновые, молочные продукты, яйца (~ 1 г / 100 г), свинину, говядину, курицу, арахис, бобовые (например, соевые бобы в количестве ~ 3 г / 100 г, нут и чечевицу) и листовые овощи.
Биосинтез
Лейцин синтезируется в растениях и микроорганизмах в несколько этапов, начиная с пировиноградной кислоты.Начальная часть пути также приводит к валину. Промежуточный α-кетовалерат превращается в α-изопропилмалат, а затем в β-изопропилмалат, который дегидрируют до α-кетоизокапроата, который на конечной стадии подвергается восстановительному аминированию. Ферменты, участвующие в типичном биосинтезе, включают (Lehninger 2000):
- ацетолактатсинтаза
- изомероредуктаза ацетогидроксикислоты
- дигидроксикислотдегидратаза
- α-изопропилмалатсинтаза
- α-изопропилмалат изомераза
- лейцинаминотрансфераза
Болезнь мочи кленового сиропа
Болезнь мочи кленовым сиропом (MSUD) — аутосомно-рецессивное нарушение метаболизма аминокислот.Его также называют кетоацидурией с разветвленной цепью .
Эта аминокислотная ацидопатия возникает из-за дефицита метаболического фермента дегидрогеназы α-кетокислоты с разветвленной цепью (BCKDH), что приводит к накоплению аминокислот с разветвленной цепью лейцина, изолейцина и валина в крови и моче.
MSUD характеризуется наличием у младенца сладко пахнущей мочи с запахом, похожим на запах кленового сиропа. Младенцы с этим заболеванием кажутся здоровыми при рождении, но если их не лечить, они получают серьезное повреждение головного мозга и в конечном итоге умирают.Из-за эффекта генетического узкого места MSUD гораздо чаще встречается у детей амишей и меннонитов.
С раннего детства состояние характеризуется плохим питанием, рвотой, недостатком энергии (летаргией), судорогами и проблемами психического здоровья. Моча пострадавших младенцев имеет характерный сладкий запах, похожий на запах горелой карамели, который и дал этому заболеванию название.
Лечение MSUD, как и диабет, требует тщательного контроля химического состава крови и включает как специальную диету, так и частые анализы.Во избежание неврологических повреждений необходимо соблюдать диету с минимальным содержанием аминокислот лейцина, изолейцина и валина. Обычно пациентам или родителям пациентов помогает врач или диетолог. Этой диеты необходимо придерживаться неукоснительно и постоянно. Однако при надлежащем лечении больные могут жить здоровой, нормальной жизнью и не страдать от серьезных неврологических повреждений, которые характерны для нелеченого заболевания.
Список литературы
Внешние ссылки
Все ссылки получены 28 июня 2018 г.
Кредиты
Энциклопедия Нового Света Писатели и редакторы переписали и завершили статью Википедия в соответствии со стандартами New World Encyclopedia . Эта статья соответствует условиям лицензии Creative Commons CC-by-sa 3.0 (CC-by-sa), которая может использоваться и распространяться с указанием авторства. Кредит предоставляется в соответствии с условиями этой лицензии, которая может ссылаться как на участников Энциклопедии Нового Света, , так и на самоотверженных добровольцев Фонда Викимедиа.Чтобы процитировать эту статью, щелкните здесь, чтобы просмотреть список допустимых форматов цитирования. История более ранних публикаций википедистов доступна исследователям здесь:
История этой статьи с момента ее импорта в Энциклопедия Нового Света :
Примечание. Некоторые ограничения могут применяться к использованию отдельных изображений, на которые распространяется отдельная лицензия.
Эффективность новой формулы L-карнитина, креатина и лейцина на безжировую массу тела и функциональную мышечную силу у здоровых пожилых людей: рандомизированное двойное слепое плацебо-контролируемое исследование | Питание и обмен веществ
Филдинг Р.А., Веллас Б., Эванс В.Дж., Бхасин С., Морли Дж. Э., Ньюман А.Б., Абеллан Ван К.Г., Андрие С., Бауэр Дж., Брейл Д., Седерхольм Т., Чандлер Дж., Де МС, Донини Л., Харрис Т., Кант А., Кейме Г.Ф., Ондер Дж., Папаниколау Д., Роллан Й., Рукс Д., Зибер С., Сухами Е., Верлаан С., Замбони М. Саркопения: недиагностированное заболевание у пожилых людей. Текущее согласованное определение: распространенность, этиология и последствия. Международная рабочая группа по саркопении. J Am Med Dir Assoc. 2011; 12 (4): 249–56.
Артикул PubMed Google ученый
Бисли Дж. М., Шикани Дж. М., Томсон, Калифорния. Роль потребления белка с пищей в предотвращении саркопении старения. Nutr Clin Pract. 2013. 28 (6): 684–90.
Артикул PubMed PubMed Central Google ученый
Марцетти Э., Кальвани Р., Чезари М., Буфорд Т.В., Лоренци М., Бенке Б.Дж., Левенбург К. Митохондриальная дисфункция и саркопения старения: от сигнальных путей до клинических испытаний. Int J Biochem Cell Biol. 2013. 45 (10): 2288–301.
CAS Статья PubMed PubMed Central Google ученый
Янссен И., Шепард Д.С., Кацмаржик П.Т., Рубенофф Р. Затраты на лечение саркопении в США. J Am Geriatr Soc. 2004. 52 (1): 80–5.
Артикул PubMed Google ученый
Ю. Дж. Этиология и последствия саркопении у пожилых. Int J Nursing Sciences.2015; 2 (2): 199–203.
Артикул Google ученый
Cruz-Jentoft AJ, Baeyens JP, Bauer JM, Boirie Y, Cederholm T, Landi F, Martin FC, Michel JP, Rolland Y, Schneider SM, Topinkova E, Vandewoude M, Zamboni M. Sarcopenia: European консенсус по определению и диагнозу: отчет европейской рабочей группы по саркопении у пожилых людей. Возраст Старение. 2010. 39 (4): 412–23.
Артикул PubMed PubMed Central Google ученый
Gray M, Glenn JM, Binns A. Прогнозирование саркопении по функциональным показателям среди пожилых людей, проживающих в сообществах. Возраст (Дордр). 2016; 38 (1): 22.
Артикул Google ученый
Эдвардс М.Х., Деннисон Э.М., Айхи С.А., Филдинг Р., Купер С. Остеопороз и саркопения в пожилом возрасте. Кость. 2015; 80: 126–30.
CAS Статья PubMed PubMed Central Google ученый
Montero-Fernandez N, Serra-Rexach JA. Роль физических упражнений при саркопении у пожилых людей. Eur J Phys Rehabil Med. 2013. 49 (1): 131–43.
CAS PubMed Google ученый
Хиксон М. Нутриционные вмешательства при саркопении: критический обзор. Proc Nutr Soc. 2015; 74 (4): 378–86.
Артикул PubMed Google ученый
Karelis AD, Messier V, Suppere C, Briand P, Rabasa-Lhoret R.Влияние добавки богатого цистеином сывороточного протеина (иммунокального (R)) в сочетании с тренировками с отягощениями на мышечную силу и безжировую массу тела у немощных пожилых людей: рандомизированное двойное слепое контролируемое исследование. J Nutr Здоровье старения. 2015; 19 (5): 531–6.
CAS Статья PubMed Google ученый
Тиланд М., ван де Рест О., Диркс М.Л., ван дер Звалув Н., Менсинк М., Ван Лун Л.Дж., де Гроот Л.С. Белковые добавки улучшают физическую работоспособность у ослабленных пожилых людей: рандомизированное двойное слепое плацебо-контролируемое исследование.J Am Med Dir Assoc. 2012. 13 (8): 720–6.
Артикул PubMed Google ученый
Диллон Э.Л., Шеффилд-Мур М., Паддон-Джонс Д., Гилкисон С., Сэнфорд А.П., Касперсон С.Л., Цзян Дж., Чинкс Д.Л., Урбан Р.Дж. Прием аминокислот увеличивает безжировую массу тела, синтез базального мышечного белка и экспрессию инсулиноподобного фактора роста-I у пожилых женщин. J Clin Endocrinol Metab. 2009. 94 (5): 1630–7.
CAS Статья PubMed PubMed Central Google ученый
Reuter SE, Evans AM. Карнитин и ацилкарнитины: фармакокинетические, фармакологические и клинические аспекты. Клин Фармакокинет. 2012. 51 (9): 553–72.
CAS Статья PubMed Google ученый
Steiber A, Kerner J, Hoppel CL. Карнитин: питательная, биосинтетическая и функциональная точки зрения. Мол Аспекты Мед. 2004. 25 (5–6): 455–73.
CAS Статья PubMed Google ученый
Owen KQ, Jit H, Maxwell CV, Nelssen JL, Goodband RD, Tokach MD, Tremblay GC, Koo SI. Диетический L-карнитин подавляет активность митохондриальной кетокислотной дегидрогеназы с разветвленной цепью и усиливает накопление белка и улучшает характеристики туши свиней. J Anim Sci. 2001. 79 (12): 3104–12.
CAS Статья PubMed Google ученый
Keller J, Ringseis R, Koc A, Lukas I., Kluge H, Eder K. Добавление l-карнитина подавляет гены протеасомной системы убиквитина в скелетных мышцах и печени поросят.Животное. 2012; 6 (1): 70–8.
CAS Статья PubMed Google ученый
Keller J, Couturier A, Haferkamp M, Most E, Eder K. Добавление карнитина приводит к активации сигнального пути IGF-1 / PI3K / Akt и понижает регуляцию E3-лигазы MuRF1 в скелетных мышцах крысы. Нутр Метаб (Лондон). 2013; 10 (1): 28.
CAS Статья Google ученый
Бухари СС, Филлипс Б.Э., Уилкинсон Д.Д., Лимб М.С., Рэнкин Д., Митчелл В.К., Кобаяши Х., Гринхафф П.Л., Смит К., Атертон П.Дж. Прием низких доз незаменимых аминокислот, богатых лейцином, стимулирует мышечный анаболизм аналогично болюсному сывороточному белку у пожилых женщин в состоянии покоя и после тренировки. Am J Physiol Endocrinol Metab. 2015; 308 (12): E1056–65.
Артикул PubMed Google ученый
Katsanos CS, Kobayashi H, Sheffield-Moore M, Aarsland A, Wolfe RR.Для оптимальной стимуляции скорости синтеза мышечного белка незаменимыми аминокислотами у пожилых людей требуется высокая доля лейцина. Am J Physiol Endocrinol Metab. 2006; 291 (2): E381–7.
CAS Статья PubMed Google ученый
Стипанук МХ. Лейцин и синтез белка: mTOR и не только. Nutr Rev.2007; 65 (3): 122–9.
Артикул PubMed Google ученый
Smith RN, Agharkar AS, Gonzales EB. Обзор добавок креатина при возрастных заболеваниях: больше, чем добавка для спортсменов. F1000Res. 2014; 3: 222.
PubMed PubMed Central Google ученый
Brosnan JT, Brosnan ME. Креатин: эндогенный метаболит, пищевая и терапевтическая добавка. Annu Rev Nutr. 2007. 27: 241–61.
CAS Статья PubMed Google ученый
Parise G, Mihic S, MacLennan D, Yarasheski KE, Tarnopolsky MA. Влияние однократного приема моногидрата креатина на кинетику лейцина и синтез белка в смешанных мышцах. J. Appl Physiol (1985). 2001. 91 (3): 1041–7.
CAS Google ученый
Deldicque L, Louis M, Theisen D, Nielens H, Dehoux M, Thissen JP, Rennie MJ, Francaux M. Повышение мРНК IGF в скелетных мышцах человека после добавления креатина. Медико-спортивные упражнения.2005. 37 (5): 731–6.
CAS Статья PubMed Google ученый
Вутцке К.Д., Лоренц Х. Влияние l-карнитина на окисление жиров, обмен белков и состав тела у субъектов с небольшим избыточным весом. Обмен веществ. 2004. 53 (8): 1002–6.
CAS Статья PubMed Google ученый
Hayot M, Michaud A, Koechlin C, Caron MA, LeBlanc P, Prefaut C, Maltais F.Микробиопсия скелетных мышц: валидационное исследование минимально инвазивной техники. Eur Respir J. 2005; 25 (3): 431–40.
CAS Статья PubMed Google ученый
Шкляр I, Пастернак А, Капур К, Даррас Б.Т., Рутково СБ. Композитные биомаркеры для оценки мышечной дистрофии Дюшенна: начальная оценка. Pediatr Neurol. 2015; 52 (2): 202–5.
Артикул PubMed Google ученый
Kervio G, Carre F, Ville NS. Надежность и интенсивность теста шестиминутной ходьбы у здоровых пожилых людей. Медико-спортивные упражнения. 2003. 35 (1): 169–74.
Артикул PubMed Google ученый
Bradford MM. Быстрый и чувствительный метод количественного определения количества белка в микрограммах, использующий принцип связывания белок-краситель. Анальная биохимия. 1976; 72: 248–54.
CAS Статья PubMed Google ученый
Vendelbo MH, Moller AB, Christensen B, Nellemann B, Clasen BF, Nair KS, Jorgensen JO, Jessen N, Moller N. Пост увеличивает высвобождение фенилаланина сеткой скелетных мышц человека, и это связано со снижением передачи сигналов mTOR. PLoS One. 2014; 9 (7): e102031.
Артикул PubMed PubMed Central Google ученый
Aleman-Mateo H, Macias L, Esparza-Romero J, Astiazaran-Garcia H, Blancas AL. Физиологические эффекты помимо значительного увеличения мышечной массы у пожилых мужчин с саркопенией: данные рандомизированного клинического исследования с использованием богатой белком пищи.Clin Interv Aging. 2012; 7: 225–34.
CAS Статья PubMed PubMed Central Google ученый
Aleman-Mateo H, Carreon VR, Macias L, Astiazaran-Garcia H, Gallegos-Aguilar AC, Enriquez JR. Богатые питательными веществами молочные белки улучшают массу скелетных мышц аппендикуляра и физическую работоспособность, а также уменьшают потерю мышечной силы у пожилых мужчин и женщин: одинарное слепое рандомизированное клиническое исследование. Clin Interv Aging.2014; 9: 1517–25.
CAS Статья PubMed PubMed Central Google ученый
Arnarson A, Gudny GO, Ramel A, Briem K, Jonsson PV, Thorsdottir I. Влияние белков сыворотки и углеводов на эффективность тренировок с отягощениями у пожилых людей: двойное слепое рандомизированное контролируемое исследование. Eur J Clin Nutr. 2013. 67 (8): 821–6.
CAS Статья PubMed Google ученый
Osbak PS, Mourier M, Henriksen JH, Kofoed KF, Jensen GB. Влияние физических упражнений на силу мышц и состав тела и их связь с функциональными возможностями и качеством жизни у пациентов с фибрилляцией предсердий: рандомизированное контролируемое исследование. J Rehabil Med. 2012; 44 (11): 975–9.
Артикул PubMed Google ученый
Costell M, O’Connor JE, Grisolia S. Возрастное снижение содержания карнитина в мышцах мышей и людей.Biochem Biophys Res Commun. 1989. 161 (3): 1135–43.
CAS Статья PubMed Google ученый
Morley JE, Argiles JM, Evans WJ, Bhasin S, Cella D, Deutz NE, Doehner W., Fearon KC, Ferrucci L, Hellerstein MK, Kalantar-Zadeh K, Lochs H, MacDonald N, Mulligan K, Muscaritoli M, Ponikowski P, Posthauer ME, Rossi FF, Schambelan M, Schols AM, Schuster MW, Anker SD. Рекомендации по питанию при саркопении.J Am Med Dir Assoc. 2010. 11 (6): 391–6.
Артикул PubMed PubMed Central Google ученый
Драммонд М.Дж., Драйер Х.С., Пеннингс Б., Фрай С.С., Дханани С., Диллон Е.Л., Шеффилд-Мур М., Вольпи Е., Расмуссен Б.Б. Анаболический ответ белка скелетных мышц на упражнения с отягощениями и незаменимые аминокислоты замедляется с возрастом. J. Appl Physiol (1985). 2008. 104 (5): 1452–61.
CAS Статья Google ученый
von HS, Morley JE, Anker SD. Обзор саркопении: факты и цифры о распространенности и клиническом воздействии. J Cachexia Sarcopenia Muscle. 2010. 1 (2): 129–33.
Артикул Google ученый
Jacobsen DE, Samson MM, Emmelot-Vonk MH, Verhaar HJ. Ралоксифен, состав тела и сила мышц у женщин в постменопаузе: рандомизированное двойное слепое плацебо-контролируемое исследование. Eur J Endocrinol. 2010. 162 (2): 371–6.
CAS Статья PubMed Google ученый
Schroeder ET, Vallejo AF, Zheng L, Stewart Y, Flores C, Nakao S, Martinez C, Sattler FR. Шестинедельное улучшение мышечной массы и силы во время терапии андрогенами у пожилых мужчин. J Gerontol A Biol Sci Med Sci. 2005. 60 (12): 1586–92.
Артикул PubMed Google ученый
Bauer JM, Verlaan S, Bautmans I, Brandt K, Donini LM, Maggio M, McMurdo ME, Mets T, Seal C, Wijers SL, Ceda GP, De VG, Donders G, Drey M, Greig C. , Holmback U, Narici M, McPhee J, Poggiogalle E, Power D, Scafoglieri A, Schultz R, Sieber CC, Cederholm T.Влияние пищевой добавки, обогащенной витамином D и сывороточным белком, на показатели саркопении у пожилых людей, исследование PROVIDE: рандомизированное двойное слепое плацебо-контролируемое исследование. J Am Med Dir Assoc. 2015; 16 (9): 740–7.
Артикул PubMed Google ученый
Филипс С.М. Пищевые добавки в поддержку упражнений с отягощениями для борьбы с возрастной саркопенией. Adv Nutr. 2015; 6 (4): 452–60.
CAS Статья PubMed PubMed Central Google ученый
D’Antona G, Nisoli E. Передача сигналов mTOR как мишень аминокислотного лечения возрастной саркопении. Междисциплинарный Top Gerontol. 2010; 37: 115–41.
Артикул PubMed Google ученый
Хауэлл Дж. Дж., Мэннинг Б.Д. mTOR связывает чувствительность клеток к питательным веществам с метаболическим гомеостазом организма. Trends Endocrinol Metab. 2011. 22 (3): 94–102.
CAS Статья PubMed PubMed Central Google ученый
Steiner JL, Bardgett ME, Wolfgang L, Lang CH, Stocker SD. Глюкокортикоиды ослабляют центральное симпатическое возбуждение инсулина. J Neurophysiol. 2014; 112 (10): 2597–604.
CAS Статья PubMed PubMed Central Google ученый
Gross KL, Wedekind KJ, Kirk CA. Влияние диетического карнитина и хрома на потерю веса и состав собак с ожирением. J Animal Sci. 1998; 76: 175.
Google ученый
Сандри М. Распад белка при истощении мышц: роль аутофагии-лизосомы и убиквитин-протеасомы. Int J Biochem Cell Biol. 2013; 45 (10): 2121–9.
CAS Статья PubMed PubMed Central Google ученый
Gumucio JP, Mendias CL. Атрогин-1, MuRF-1 и саркопения. Эндокринная. 2013. 43 (1): 12–21.
CAS Статья PubMed Google ученый
Jang J, Park J, Chang H, Lim K. Добавка l-карнитина снижает атрофию скелетных мышц, вызванную длительным подвешиванием задних конечностей у крыс. Appl Physiol Nutr Metab. 2016; 41 (12): 1240–7.
CAS Статья PubMed Google ученый
Ringseis R, Keller J, Eder K. Механизмы, лежащие в основе действия добавки L-карнитина против истощения при патологических условиях: данные экспериментальных и клинических исследований.Eur J Nutr. 2013; 52 (5): 1421–42.
CAS Статья PubMed Google ученый
Глинн Э.Л., Фрай С.С., Драммонд М.Дж., Тиммерман К.Л., Дханани С., Вольпи Э., Расмуссен Б.Б. Избыточное потребление лейцина усиливает анаболические сигналы мышц, но не анаболизм чистого белка у молодых мужчин и женщин. J Nutr. 2010. 140 (11): 1970–6.
CAS Статья PubMed PubMed Central Google ученый
Rawson ES, Clarkson PM, Price TB, Miles MP. Дифференциальный ответ мышечного фосфокреатина на добавку креатина у молодых и старых субъектов. Acta Physiol Scand. 2002. 174 (1): 57–65.
CAS Статья PubMed Google ученый
Devries MC, Phillips SM. Добавки креатина во время тренировок с отягощениями у пожилых людей — метаанализ. Медико-спортивные упражнения. 2014. 46 (6): 1194–203.
CAS Статья PubMed Google ученый
Janssen HC, Samson MM, Verhaar HJ. Дефицит витамина D, функция мышц и падения у пожилых людей. Am J Clin Nutr. 2002. 75 (4): 611–5.
CAS PubMed Google ученый
Agergaard J, Trostrup J, Uth J, Iversen JV, Boesen A, Andersen JL, Schjerling P, Langberg H. Улучшает ли потребление витамина D во время тренировок с отягощениями гипертрофические и силовые реакции скелетных мышц у молодых и пожилых людей мужчины? — рандомизированное контролируемое исследование.Нутр Метаб (Лондон). 2015; 12:32.
Артикул Google ученый
Феррейра-Гонсалес И., Перманьер-Миральда Г., Буссе Дж. У., Брайант Д. М., Монтори В. М., Алонсо-Коэльо П., Уолтер С. Д., Гайатт Г. Х. Методологические обсуждения использования и интерпретации составных конечных точек ограничены, но все же выявляют основные проблемы. J Clin Epidemiol. 2007. 60 (7): 651–7.
Артикул PubMed Google ученый
АминокислотыБелковые молекулы состоят из большого количества связанных друг с другом мономеров.Аминокислоты являются именно этими мономерами или строительными блоками, играющими важную роль в метаболизме живого организма, поскольку аминокислоты необходимы для поддержания азотного баланса и стимулирования роста. Более того, аминокислоты оказывают сильное влияние на питательную ценность пищевых продуктов, поскольку они непосредственно влияют на вкус и являются предшественниками некоторых соединений, которые образуются во время приготовления, хранения и приготовления пищи. Белки гидролизуются до двадцати различных аминокислот, девятнадцать из которых являются α-аминокислотами — это означает, что аминогруппа (Nh3) связана с атомом углерода, соседним с карбоксильной группой.Общая формула — RCH (Nh3) COOH, в которой радикал R (боковая цепь) находится в диапазоне от простого атома водорода (для глицина) до более сложных алифатических, ароматических или гетероциклических групп. Единственным исключением из этой общей формулы является пролин, поскольку группа Nh3 включена в пятиуглеродную циклическую структуру. Название каждой аминокислоты сокращается трехбуквенным кодом, основанным на первых трех буквах их названий (рис. 1).Определенная боковая цепь R каждой аминокислоты влияет на их физические и химические свойства и, следовательно, на свойства белков.В соответствии с полярностью R (рис. 1) можно сгруппировать аминокислоты в четыре класса: (i) незаряженные неполярные боковые цепи (аланин, глицин, валин, лейцин, изолейцин, пролин, фенилаланин, триптофан и метионин), (ii) незаряженная полярная боковая цепь (серин, треонин, цистеин, тирозин, аспарагин и глутамин), (iii) заряженная боковая цепь (положительный заряд: лизин, аргинин и гистидин; отрицательный заряд: аспарагиновая и глутаминовая кислоты). | ||||||||||||||||||||||||||||||||||||||||||||||||||||
Фиг.1. Химическая структура, название и трехбуквенный код для различных аминокислот. | ||||||||||||||||||||||||||||||||||||||||||||||||||||
С точки зрения питания, аминокислоты подразделяются на две группы: незаменимые (аминокислоты, которые люди не могут синтезировать и, следовательно, должны быть получены с пищей) — валин, лейцин, изолейцин, фенилаланин, триптофан, метионин, гистидин, треонин, лизин и аргинин (полужидкие) и заменимые — глицин, аланин, пролин, серин, цистеин, тирозин, аспарагин, глутамин, аспарагиновая и глутаминовая кислоты.Незаменимые аминокислоты так же важны, как и незаменимые, поскольку они незаменимы в физиологических процессах организма, тем не менее, люди могут жить без их присутствия в рационе. Например, цистеин и тирозин незаменимы для взрослых людей, но не являются необходимыми, поскольку организм вырабатывает первый из метионина, а второй — из фенилаланина.Подобно белкам, содержащимся в молоке, яйцах и мясе, белки морепродуктов обладают высокой биологической ценностью, поскольку они содержат все аминокислоты, необходимые для питания человека (Таблица I). | ||||||||||||||||||||||||||||||||||||||||||||||||||||
Таблица I. Средние уровни незаменимых аминокислот (%) в белках различного происхождения (морепродукты, молоко, говядина и яйца). | ||||||||||||||||||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||||||||||||||||||
Если вы хотите узнать больше, см .:Белиц, Х.-D .; Groseh, W., 1985. Química de los alimentos. Редакция Acribia. S.A., Сарагоса. 813p.Ferreira, F.G., 1983. Nutrição Humana. Fundação Calouste Gulbenkian, Лиссабон. 1291 с. | ||||||||||||||||||||||||||||||||||||||||||||||||||||
Недостающее звено в понимании раннего детского ожирения
Увеличение количества белка при кормлении детской смесью на основе коровьего молока по сравнению с более низким содержанием белка в грудном молоке является общепризнанным основным фактором риска детского ожирения.Однако до сих пор нет окончательной биохимической концепции, объясняющей механизмы детского ожирения, вызванного смесями. Целью данной статьи является обеспечение биохимической связи между лейцином-опосредованной передачей сигналов белков молока млекопитающих и адипогенезом, а также ранним адипогенным программированием. Лейцин был идентифицирован как преобладающий преобразователь сигналов молока млекопитающих, который стимулирует чувствительную к питательным веществам киназу млекопитающих-мишень рапамицинового комплекса 1 (mTORC1). Таким образом, лейцин функционирует как реле матери и новорожденного для mTORC1-зависимой неонатальной пролиферации β -клеток и секреции инсулина.Мишень mTORC1 S6K1 играет ключевую роль в стимуляции дифференцировки мезенхимальных стволовых клеток в адипоциты и индукции инсулинорезистентности. Крайне важно, чтобы детские смеси содержали больше лейцина по сравнению с грудным молоком. Таким образом, усиленная лейцин-опосредованная передача сигналов mTORC1-S6K1, индуцированная смесями для младенцев, может объяснять повышенный адипогенез и образование повышенных на протяжении всей жизни количества адипоцитов. Ослабление передачи сигналов mTORC1 в детской смеси за счет ограничения лейцина физиологически более низкими уровнями грудного молока предлагает прекрасные возможности для предотвращения детского ожирения и связанных с ожирением метаболических заболеваний.
1. Введение
Ожирение является серьезной проблемой для здоровья в западных обществах с распространенностью до 25% с растущей заболеваемостью среди детей [1]. Ожирение — сложное заболевание, которое связано с взаимодействием экологических и генетических факторов [2]. Примерно 25% детей в США имеют избыточный вес и примерно 11% страдают ожирением. С 1976 по 1991 год распространенность детей с избыточной массой тела в США увеличилась примерно на 40% [1]. Сахарный диабет 2 типа (СД2) у детей и подростков является важной и растущей проблемой общественного здравоохранения, непосредственно связанной с эпидемией детского ожирения [3].Высокий ИМТ при рождении был определен как важный фактор, определяющий избыточный вес в более позднем возрасте [4]. В западных обществах материнское и послеродовое питание является чрезмерным и может существенно повлиять на программирование развития [5].
2. Связь между вскармливанием детских смесей и детским ожирением
В 1981 году в Монреале исследование случай-контроль детей в возрасте от 12 до 18 лет представило первые доказательства того, что грудное вскармливание защищает от последующего ожирения [6]. Поперечное исследование в южной Германии (Бавария) оценило факторы раннего вскармливания, диеты и образа жизни 13 345 детей на момент поступления в школу.Распространенность ожирения у детей, никогда не кормивших грудью, составила 4,5% по сравнению с 2,8% у детей, вскармливаемых грудью [7]. Было выявлено явное влияние дозы на распространенность ожирения в течение периода грудного вскармливания. Таким образом, грудное вскармливание является значительным защитным фактором от развития ожирения и избыточного веса [7]. В течение первых 6–8 недель жизни разница в росте (прибавке в весе и длине тела) между детьми, вскармливаемыми грудью и смесью, незначительна. Однако в возрасте примерно от 2 месяцев до конца первого года жизни младенцы, находящиеся на искусственном вскармливании, набирают вес и длину быстрее, чем младенцы, находящиеся на грудном вскармливании [8].Данные свидетельствуют о том, что в конце первого года жизни младенцы, находящиеся на грудном вскармливании, стройнее, чем младенцы, вскармливаемые смесями. Младенцы на искусственном вскармливании в возрасте 4-5 месяцев демонстрируют более высокие уровни IGF-1, инсулина и некоторых аминокислот в плазме, чем младенцы, находящиеся на грудном вскармливании. В то время как потребление белка грудным младенцем уменьшается с возрастом и близко соответствует потребностям в белке в первые месяцы жизни, потребление белка младенцами на искусственном вскармливании превышает потребности после первых 1-2 месяцев жизни в соответствии с гипотезой о том, что различия в потреблении белка в основном ответственны за различия в росте у детей, вскармливаемых грудью и искусственными смесями ( ранняя гипотеза ) [8].Двойное слепое рандомизированное контролируемое исследование представило убедительные доказательства того, что детские смеси, обеспечивающие высокое потребление белка в течение первого года жизни, вызывают чрезмерную прибавку в весе в раннем детстве [9]. Таким образом, было подтверждено, что высокое потребление белка в раннем младенчестве является важным фактором риска ожирения в более позднем возрасте [9, 10].
Исключительно грудное вскармливание здоровой матерью должно быть стандартом от рождения до как минимум 6 месяцев. В период грудного вскармливания потребление белка человеком низкое по сравнению со многими другими животными.Ежедневное потребление белка при грудном вскармливании составляет примерно 1 г / кг / день. Когда в период отлучения вводятся другие продукты, потребление белка заметно увеличивается до 3-4 г / кг / день, несмотря на то, что потребность в белке снижается [11]. Систематический обзор, оценивающий идеальное количество диетического белка для младенцев с низкой массой тела при рождении на искусственном вскармливании <2,5 кг, пришел к выводу, что более высокое потребление белка (> 3,0 г / кг / день, но <4,0 г / кг / день) из смеси по сравнению с более низким потреблением белка (<3 г / кг / день) ускоряет набор веса [12].Кроме того, грудное молоко по сравнению с детской смесью содержит лептин, который, как предполагается, играет роль в перинатальном программировании массы тела и регуляции термогенеза мышц [13].
3. Послеродовая диета с высоким содержанием белка увеличивает риск ожирения у крыс в зрелом возрасте
Диета с низким содержанием белка для крыс, вероятно, наиболее широко использовалась для попытки выяснить механизмы метаболического программирования [14]. Однако лишь несколько исследований оценивали влияние высокобелковой диеты на программирование развития.Диета с высоким содержанием белка (40% вес / вес казеина; 4% лейцина) по сравнению с нормальной диетой (20% вес / вес казеина, 2% лейцин) или диетой с высоким содержанием клетчатки (17,3% вес / вес казеина; 1,7% лейцина) у крысят линии Вистар, отлученных от груди на 21 день, было связано с повышенной восприимчивостью к ожирению во взрослом возрасте [15]. Масса тела, жировая масса и гликемия у взрослых самцов и жировая масса у самок были выше после провокации с высоким содержанием жиров у этих крыс, которые потребляли диету с высоким содержанием белка после отъема [15, 16]. Диета с высоким содержанием белка во время раннего роста демонстрировала чрезмерное увеличение жировой массы в ответ на диету с высоким содержанием жиров и сахарозы у взрослых крыс, а также повышенные уровни лептина во время перорального введения глюкозы [17].Таким образом, питание матери во время беременности и кормления грудью, а также кормление в раннем послеродовом периоде являются критическими периодами, в течение которых можно разработать стратегии вмешательства для снижения распространенности ожирения [18].
4. Молоко млекопитающих: сигнальная система для роста новорожденных
Информация о потенциальных эндокринных механизмах передачи сигналов молочного белка очень скудна. До сих пор наибольшее внимание уделялось роли IGF-1 как движущему механизму опосредованного молоком роста [19–26]. Было показано, что IGF-1 стимулирует дифференцировку преадипоцитов в адипоциты [27, 28].Более того, аминокислоты с разветвленной цепью (BCAA) лейцин, изолейцин и валин, как предполагается, участвуют в стимулирующем рост эффекте молока, поскольку они являются физиологическими стимулами секреции инсулина [29, 30]. И инсулин, и IGF-1 обладают митогенным и анаболическим действием и стимулируют липогенез и адипогенез [31].
Недавно было подчеркнуто, что молоко млекопитающих является наиболее важной эндокринной видоспецифичной сигнальной системой, которая способствует росту новорожденных за счет увеличения опосредованной инсулином, IGF-1, инкретина и лейцина мишени рапамицинового комплекса 1- (mTORC1) млекопитающих. -) передача сигналов β -клеток поджелудочной железы [32].Передача сигналов в молоке преимущественно основана на молочных белках, эволюционно хорошо законсервированных секреторных продуктах генома лактации млекопитающих, которые необходимы для роста и выживания новорожденных млекопитающих, и были установлены более 160 миллионов лет назад [33]. Примечательно, что среди всех видов млекопитающих среднее содержание белка в молоке у человека является самым низким и составляет 1,21 г белка / 100 мл зрелого грудного молока в течение первых 3 месяцев лактации и 1,14 г / 100 мл в течение 6 месяцев. лактации соответственно [34].Недавние данные о грудном молоке (> 15 дней после родов) показали, что содержание белка составляет 1,26 г / 100 мл в течение дня и 1,35 г / 100 мл в течение ночи, соответственно [35]. Напротив, коровье молоко содержит 3,36 г белка / 100 мл.
5. Общее поглощение лейцина молоком млекопитающих и скорость роста новорожденных
Интересно, что содержание белка в молоке млекопитающих различных видов связано со скоростью роста потомства [36]. Новорожденным людям, которые получают самое низкое содержание белка в молоке среди видов млекопитающих, требуется 180 дней, чтобы удвоить свой вес при рождении по сравнению с телятами, которые удваивают свой вес при рождении уже через 40 дней.Самые высокие концентрации молочного белка обнаружены у крыс и кроликов в диапазоне 8,7 г / 100 мл и 10 г / 100 мл соответственно, которые удваивают свой вес при рождении уже через 4–5 дней [36]. Таким образом, существует корреляция между видоспецифической концентрацией белка в молоке млекопитающих и скоростью роста новорожденного (Таблица 1). Примечательно, что количество лейцина на грамм молочного белка, по-видимому, является независимой от вида константой млекопитающих в диапазоне 100 мг лейцина / г молочного белка для людей, различных приматов и видов, не являющихся приматами, включая корову [37] (Таблица 2).Таким образом, общее количество молочного белка, скармливаемого новорожденному млекопитающему, коррелирует с общим поглощением лейцина, обеспечиваемым молоком млекопитающих, и, по-видимому, связано с опосредованным лейцином ростом. Эти наблюдения относятся к недоношенным детям, получавшим смесь с более высокой концентрацией белка, которые набирали вес быстрее, чем дети, получавшие смеси с более низкой концентрацией белка, более близкие к таковой в грудном молоке [38].
| |||||||||||||||||||||||||||||||||||
1 Данные согласно Davis et al. [37]; 2 Высокопротеиновая смесь для младенцев с высоким содержанием белка HP; LP с низким содержанием белка для последующего ухода за питательными смесями в возрасте 6 месяцев [39]. 3 Данные по Bounous et al. [36]. |
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
* Данные получены из Davis et al.[37]. |
6. Молочные белки: самый богатый животный белок источник лейцина
Среди всех животных белков молочные белки содержат наибольшее количество лейцина. Самый высокий уровень лейцина обнаружен во фракции водорастворимого и легкоусвояемого сывороточного протеина — 14% [40]. Важным переносчиком лейцина является сывороточный протеин α -лактальбумин. Бычий и человеческий α -лактальбумин содержат 10,4% и 11,3% лейцина соответственно [41]. Сывороточные белки и особенно α -лактальбумин вызывают высокий инсулинемический ответ, который преимущественно опосредуется инсулинотропной активностью лейцина [42].
Основная часть белков коровьего молока содержится в казеиновой фракции (80%). Казеины крупного рогатого скота содержат в среднем 10% лейцина. Яичный белок (8,5% лейцин) и мясной белок (8% лейцин) содержат меньше лейцина, чем молочные белки, белки-стартовые белки эволюции млекопитающих [40]. Чтобы понять роль опосредованной молоком передачи сигналов лейцина, наиболее важная регуляторная функция лейцин-зависимой киназы млекопитающих-мишеней рапамицинового комплекса 1 (mTORC1) должна быть обсуждена более подробно.
7. mTORC1: центральный регулятор роста клеток млекопитающих
Лейцин, а также гормоны роста инсулин и IGF-1 являются важными активирующими стимулами для чувствительной к питательным веществам киназы mTORC1, центрального регулятора роста клеток, сохраняемого от дрожжей до млекопитающих [ 43–49]. Аминокислоты и преимущественно лейцин являются наиболее важными сигналами для передачи сигналов mTORC1 и необходимы для активации mTORC1 факторами роста, такими как инсулин и IGF-1 [49] (Рисунок 1). Недавние открытия в области молекулярной биологии установили ключевую роль mTORC1 в регуляции множества центральных функций клетки, включая транскрипцию генов, трансляцию, биогенез рибосом, синтез белка, рост клеток, пролиферацию клеток, синтез липидов, митохондриальную активность и подавление аутофагия [44–47].Рибосомная киназа S6 (S6K1) и связывающий белок фактора инициации трансляции 4E (4E-BP1) являются двумя наиболее охарактеризованными субстратами mTORC1. Их фосфорилирование с помощью mTORC1 опосредует функцию mTORC1 по регуляции трансляции [43, 44]. mTORC1 был идентифицирован как наиболее важная точка конвергенции передачи сигналов, производных от питательных веществ, и, таким образом, имеет решающее значение для роста новорожденных [50].
mTOR представляет собой мультидоменный белок приблизительно 300 кДа, демонстрирующий протеинкиназный домен на своем С-конце, связанный с фосфоинозитол-3-киназами (PI3Ks).В клетках млекопитающих существуют два функционально различных комплекса mTOR: mTORC1 и mTORC2 соответственно. Среди других функциональных белков mTORC1 содержит важный белок-партнер raptor, который взаимодействует с субстратами для mTORC1-опосредованного фосфорилирования. mTORC1 контролирует переход G 1 / S и прогрессирование G 2 / M клеточного цикла [51]. В отличие от mTORC2, который содержит белок-партнер rictor, только mTORC1 играет особую роль в обнаружении клеточных питательных веществ, аминокислот и уровней энергии (АТФ), важных для роста и пролиферации клеток.LKB1 и AMP-активированная протеинкиназа (AMPK) являются критическими регуляторами mTORC1 [52]. Большинство функций mTORC1 ингибируются рапамицином, триеновым макролидным антибиотиком, синтезируемым Streptomyces hygroscopicus [44, 47]. Сигналы факторов роста, такие как инсулин и IGF-1, интегрируются белками туберозного склероза TSC1 (гамартин) и TSC2 (туберин), которые образуют комплекс, регулирующий Rheb (гомолог ras, обогащенный в головном мозге), последний активатор mTORC1 [53–57]. ] (Рисунок 1). Передача сигналов фактора роста посредством фосфорилирования TSC2 снижает ингибирующую функцию TSC1 / TSC2 по отношению к Rheb, что приводит к активации Rheb и, наконец, mTORC1 [53-57].mTORC1 следует рассматривать как ключевой узел в передаче сигналов клетки, потому что он интегрирует многие внутри- и внеклеточные сигналы, такие как факторы роста (инсулин, IGF-1), сигналы чувствительности к энергии (глюкоза, соотношение AMP / ATP, регулирующее AMPK) и наиболее важно доступность аминокислот, особенно лейцина для активации mTORC1 [45, 49, 50] (Рисунок 1).
8. Аминокислотная активация mTORC1
Были идентифицированы два параллельных механизма активации mTORC1: (1) восходящая активация малой GTPase Rheb сигналами фактора роста и высокими уровнями глюкозы / АТФ, и (2) аминокислотно-опосредованная Rag GTPase-зависимая транслокация неактивного mTORC1 в активный Rheb, локализованный в поздних эндосомных или лизосомных компартментах [58–61] (Figure 1).Более того, активность mTORC1 регулируется малыми GTPases семейства Rab и Arf, которые стимулируют активацию mTORC1 за счет регуляции внутриклеточного транспорта в ответ на аминокислоты [62]. Raptor был идентифицирован как взаимодействующий партнер сигнального адаптера p62, который является неотъемлемой частью mTORC1 и необходим для передачи аминокислотного сигнала для активации S6K1 и 4E-BP1 [63]. p62 взаимодействует аминокислотно-зависимым образом с mTORC1 и raptor и связывает белки Rag и способствует образованию активного гетеродимера Rag, который дополнительно стабилизируется хищником.Интересно, что p62 совместно локализуется с Rags в лизосомном компартменте и необходим для взаимодействия mTORC1 с Rag GTPases in vivo и для транслокации mTORC1 в лизосому, что является решающим шагом для активации mTORC1 [63, 64] (Рисунок 1). Недавно были получены доказательства того, что mTORC1 также воспринимает лизосомные аминокислоты посредством механизма вывернутого наизнанку, который требует вакуолярной H + -АТФазы [65].
9. Приоритет лейцина для активации mTORC1
Основные BCAA важны для регуляции роста, биосинтеза белка и метаболизма [45, 49].Имеются убедительные доказательства того, что из всех аминокислот лейцин играет основную роль в активации mTORC1 [43, 64]. Системный переносчик L-аминокислот 1/2 и гликопротеин 4F2hc / CD98 являются основным путем проникновения в клетку нейтральных аминокислот, таких как лейцин. Накопление внутриклеточных аминокислот, как полагают, достигается с помощью транспортера системы А, такого как SNAT2 (натрий-связанный переносчик нейтральных аминокислот 2) [66]. Экспрессия как системы L (LAT1 / CD98), так и системы A (SNAT2) положительно коррелировала с активностью mTORC1 [67, 68].Их функциональное соединение может объяснить, почему глутамин необходим для стимулирующего действия лейцина на активность mTORC1 [69, 70]. Взаимный обмен внутриклеточного глутамина на внеклеточный лейцин важен для активации mTORC1 и его нижестоящей мишени S6K1 [71–73]. Поскольку передача сигналов mTORC1 положительно стимулирует синтез белка, имеет физиологический смысл, что передача сигналов mTORC1 строго регулируется доступностью аминокислот. Удаление лейцина в культуре клеток было почти таким же эффективным в подавлении передачи сигнала mTORC1, как и удаление всех аминокислот [43].Выдающийся эффект отмены лейцина постоянно наблюдается в различных типах клеток, что подчеркивает примат лейцина в опосредованной аминокислотами регуляции mTORC1 [45]. Уровни лейцина в плазме крови крыс были линейно связаны с потреблением граммов белковой диеты независимо от источника питания [74]. У людей самые высокие концентрации лейцина после приема пищи были измерены после приема пищи из сывороточного белка, за которой следовали молочная мука и сырная мука, соответственно [42]. Самая сильная корреляция между постпрандиальным ответом на инсулин и ранним приростом аминокислот в плазме была продемонстрирована для лейцина, валина, лизина и изолейцина.По сравнению с другими аминокислотами лейцин показал самый высокий инсулиногенный индекс [42]. Таким образом, лейцин играет решающую роль в активации mTORC1, росте клеток β , пролиферации клеток β и секреции инсулина [42, 43, 45, 49].
10. Лейцин-mTORC1-зависимый
β -пролиферация клеток и секреция инсулинаИнсулин является анаболическим и митогенным гормоном, важным для роста новорожденных. И инсулин, и IGF-1 участвуют в регуляции адипогенеза [28, 31].Таким образом, регуляция секреции инсулина молоком млекопитающих играет решающую роль для роста грудной клетки и жировой ткани. Несмотря на низкую углеводную составляющую и низкий гликемический индекс, как цельное коровье молоко, так и обезжиренное молоко демонстрируют высокий инсулинемический индекс (> 100), который зависит от фракции инсулинотропного белка в молоке [75, 76]. Биологическая функция молока состоит в том, чтобы стимулировать рост новорожденных путем стимулирования роста массы неонатальных β -клеток и секреции инсулина. Как и во всех других периферических клетках, путь mTORC1 очень активен в β -клетках и играет центральную роль в опосредованной лейцином пролиферации β -клеток и секреции инсулина [77].Лейцин активирует mTORC1 независимо от инсулина [29, 30]. Клетки β поджелудочной железы экспрессируют множество рецепторов факторов роста, которые стимулируют mTORC1 и способствуют росту и репликации клеток β [78]. Инсулин и IGF вместе с лейцином, глутамином и глюкозой модулируют трансляцию белка через mTORC1 в β -клетках [29, 30]. Глюкоза сильно активирует mTORC1 аминокислотно-зависимым образом в островках грызунов и человека [29]. Напротив, ингибитор mTORC1 рапамицин дозозависимо ингибировал синтез ДНК островков крысы, подвергшихся воздействию повышенных уровней глюкозы [29].Известно, что передача сигналов mTORC1 / S6K1 / 4E-BP1 контролирует размер и пролиферацию клеток за счет увеличения трансляции мРНК и прогрессирования клеточного цикла [44, 51, 78]. Уже было продемонстрировано, что лейцин активирует регуляторы трансляции, фосфорилированный устойчивый к нагреванию и кислоте белок, регулируемый инсулином (PHAS-I) и S6K1, в зависимости от mTORC1 [79]. Индуцированная лейцином секреция инсулина β -клеток включает усиление митохондриального метаболизма за счет окислительного декарбоксилирования и аллостерической активации глутаматдегидрогеназы.Лейцин необходим для активации трансляции белка через mTORC1 и способствует усилению функции β -клетки, стимулируя связанный с ростом синтез белка и пролиферацию β -клеток [79, 80]. Активация mTORC1 в β -клетках TSC2-дефицитных мышей ( β TSC2 — / — ) усиливала биогенез митохондрий и повышала секрецию инсулина [81]. Напротив, у мышей с дефицитом S6K1 наблюдалась гипоинсулинемия, непереносимость глюкозы и уменьшался размер β -клеток [82].Таким образом, имеются существенные доказательства решающей роли лейцина в mTORC1-S6K1-опосредованной активации, увеличивающей пролиферацию β -клеток, трансляцию белков и синтез инсулина [77–82]. Наиболее важной функцией передачи сигналов молока, передаваемых лейцином, является стимуляция секреции инсулина, фундаментального механизма стимуляции роста для инсулино-опосредованной передачи сигналов mTORC1 инсулино-чувствительных периферических клеток организма, включая адипоциты.
11. Избыточное потребление лейцина при кормлении грудными смесями
Детские смеси на основе коровьего молока в настоящее время содержат почти на 50% больше общего белка (2.От 1 до 2,2 г / 100 ккал), чем грудное молоко (1,8 г / 100 ккал) [83]. Примечательно, что потребление белка на кг массы тела у детей, находящихся на искусственном вскармливании, на 55–80% выше, чем у детей, находящихся на грудном вскармливании [84]. Самое последнее рандомизированное клиническое исследование показало, что смеси для грудных детей и последующих детей на основе коровьего молока, приготовленные с более низким содержанием белка (1,77 и 2,2 г белка / 100 ккал) и более высоким содержанием белка (2,9 и 4,4 г белка / 100 ккал), имели более высокое содержание лейцина по сравнению с грудным молоком [39]. Смеси для младенцев и последующих детей с более низким содержанием белка содержали 119 и 154 мг лейцина / 100 мл, тогда как смеси для младенцев и последующих детей с более высоким содержанием белка содержали 197 и 308 мг лейцина / 100 мл, соответственно.Для сравнения, грудное молоко содержит только 104 мг лейцина на 100 мл [37, 39] (Таблица 3). Таким образом, количество лейцина, обеспечиваемое этими смесями для младенцев, было на 14,4%, 48,1%, 89,4% и 196,2% выше по сравнению с физиологическими уровнями лейцина, содержащимися в материнском молоке. В возрасте 6 месяцев уровни лейцина в сыворотке у младенцев, получавших смесь с более высоким содержанием белка, составляли 165 мкм моль / л, а у детей, получавших смесь с более низким содержанием белка, составляли 120 мкмоль моль / л, соответственно, тогда как самые низкие уровни лейцина в сыворотке крови были обнаружен у младенцев, находящихся на грудном вскармливании (106 мк моль / л) (Таблица 3) [39].Более высокие уровни лейцина в сыворотке крови младенцев, получавших большее количество лейцина из детской смеси, просто отражают известную линейную корреляцию между потреблением аминокислот с пищей и уровнями аминокислот в сыворотке [74] (рис. 2). Таким образом, чрезмерное поступление лейцина в детскую смесь вызывает наибольшую озабоченность, поскольку доступность лейцина является решающим фактором, определяющим величину активности mTORC1 [43, 45].