Мышечное строение тела человека: анатомия, строение, функции – Российский учебник

Содержание

Общее строение тела человека – Opiq

Сходные по строению, функциям и происхождению клетки вместе с межклеточным веществом образуют ткань.

Все ткани в теле человека выполняют одну основную функцию. Например, кровь – это соединительная ткань, она связывает различные части организма в единое целое (переносит кислород и питательные вещества ко всем частям тела, выравнивая температуру). С другой стороны, различные части ткани, такие как клетки крови, выполняют разные функции: красные кровяные тельца связывают и транспортируют кислород, а белые участвуют в защите организма.

В теле человека можно выделить четыре основных типа тканей: эпителиальную, соединительную, мышечную и нервную.

Нервная ткань формирует головной и спинной мозг. Нервная ткань образована нервными клетками (нейронами).

Они воспринимают раздражения, анализируют их и передают дальше. Нервные клетки состоят из тела и многочисленных отростков. Один из отростков обычно длинный (нейрит, или аксон), остальные – короткие (дендриты). Отростки выполняют разные функции: короткие отростки проводят раздражение к телу клетки, а длинный отросток – от тела клетки. Отходящие от нервных клеток длинные отростки объединяются в нервы.

Мышечная ткань образована мышечными клетками. Эти клетки способны к сокращению, благодаря чему человек может двигаться. Существует три вида мышечной ткани.

Соединительная ткань связывает организм в единое целое и формирует скелет. Отличается большим количеством межклеточного вещества. В организме человека соединительная ткань представлена различными формами:

Эпителиальная ткань выполняет защитную функцию. Клетки ткани расположены вплотную друг к другу. Эпителий покрывает поверхность тела и выстилает внутренние полости. Способностью клеток эпителия к быстрому размножению обеспечивается скорое зарастание поверхностных ран. Выстланные эпителием железы производят различные секреты, например пищеварительные соки желудка и кишечника.

простым языком. От чего зависит сила человека

Мышечная система — это основа основ физического здоровья. Анатомия мышц человека представлена более 600 различными волокнами, которые составляют до 47 % от общей массы организма. От их функциональности зависит не только передвижение тела в пространстве, но и многие физиологические процессы: глотание, кровообращение, жевание, обмен веществ, сердечные сокращения и т. д. Мышечный каркас формирует строение тела, обеспечивает положение относительно окружающих предметов, позволяет человеку принимать участие в различных физических действиях и выполнять большую часть работ. Поэтому подробное изучение строения мышц, их классификации и функциональности считается одним из ключевых разделов анатомии.

Каждая отдельно взятая мышца — это целостный орган, состоящий из множества маленьких мышечных волокон — миоцитов, а также плотной и рыхлой соединительной ткани в различном соотношении. В ней выделяют 2 функциональные зоны: брюшко и сухожилие. Брюшко выполняет в основном сократительную функцию, поэтому представлено комбинацией соединительнотканного вещества и миоцитов, способных к сокращению и возбуждению. Сухожилие же считается пассивной частью мышцы. Оно располагается по краям и состоит из плотной соединительной ткани, благодаря которой осуществляется прикрепление волокон к костям и суставам.

Иннервация и кровоснабжение каждой мышцы осуществляется за счёт тончайших капилляров и нервных волокон, расположенных между пучками из 10–50 миоцитов. Благодаря этому мышечная ткань получает необходимое питание, снабжается кислородом и полезными веществами, а также может сокращаться в ответ на переданный нервной тканью импульс.

Каждое мышечное волокно выглядит как длинная многоядерная клетка, длина которой в разы превышает поперечное сечение. Оболочка, покрывающая миоцит, объединяет различное количество мелких миофибрилл, в зависимости от числа которых, выделяют белые и красные мышцы. В белых миоцитах число миофибрилл выше, поэтому они быстрее реагируют на импульс и активнее сокращаются. Красные волокна относятся к группе медленных, поскольку в них количество миофибрилл меньше.

Каждая миофибрилла состоит из ряда веществ, от которых зависят функциональные особенности и свойства мышц:

  • Актин — это аминокислотная белковая структура, способная к сокращению.
  • Миозин — главная составляющая миофибрилл, сформированная полипептидными цепочками из аминокислот.
  • Актиномиозин — комплекс белковых молекул актина и миозина.

Основную часть миоцитов составляют белки, вода и вспомогательные компоненты: соли, гликоген и др. Причём большую часть составляет именно вода — её процентное соотношение колеблется в диапазоне 70–80 %. Несмотря на это, каждое отдельно взятое мышечное волокно крайне сильное и устойчивое, и эта сила увеличивается в зависимости от количества миоцитов, объединённых в мышцу.

Огромное количество мышц в анатомии классифицируют по разным критериям, включающим строение, физиологические особенности, форму, размер, расположение и другие показатели. Рассмотрим каждую группу, чтобы понять, как устроена мышечная ткань человека:

  1. Гладкие мышечные волокна являются структурной единицей стенок внутренних органов, кровеносных капилляров и сосудов. Они сокращаются и расслабляются вне зависимости от импульсов, посланных сознанием человека. Работа гладких мышц отличается последовательностью, размеренностью и непрерывностью.
  2. Скелетные мышцы — каркас человеческого тела. Они отвечают за физическую активность, поддержание организма в определённом положении и двигательные возможности человека. Деятельность скелетной мускулатуры контролируется мозгом. Миоциты этой группы быстро сокращаются и расслабляются, активно реагируют на тренировки, но при этом склонны к утомлению.
  3. Сердечная мышца — отдельный вид миоцитов, объединивший часть функциональных особенностей гладких и скелетных волокон. С одной стороны, её активность непрерывна и не зависит от нервных импульсов, посланных сознанием, а с другой, сокращения осуществляются быстро и интенсивно.

Также мышцы подразделяются на топографические группы, исходя из их местоположения. В организме выделяют мышцы нижних конечностей (стопы, бедра и голени), верхних конечностей (кисти, плеча и предплечья), а также головы, шеи, груди, спины и живота. Каждая из этих групп делится на глубокую и поверхностную, наружную и внутреннюю.

В зависимости от количества суставов, охваченных мышцей, они делятся на односуставные, двусуставные и многосуставные. Чем больше сочленений задействовано, тем выше функционал конкретной мышцы.

Кроме того, мышцы классифицируются по форме и строению. К группе простых относятся веретенообразные, длинные, прямые, короткие и широкие волокна. Многоглавые мышцы — сложные. Они представлены бицепсом, состоящим из 2 головок, трицепсом — из 3 головок и квадрицепсом — из 4 головок. Кроме того, сложными считаются многосухожильные и двубрюшные группы миоцитов. Они бывают квадратными, дельтовидными, пирамидальными, зубчатыми, ромбовидными, камбаловидными, круглыми или треугольными.

В зависимости от функциональных особенностей выделяют:

  • сгибатели,
  • разгибатели,
  • пронаторы (вращатели по направлению кнутри),
  • супинаторы (вращатели к наружной стороне),
  • мышцы, отвечающие за отведение и приведение, поднятие и опускание и т. д.

Основная масса мышц работает парно, выполняя общую или противоположную функцию. Мышца-агонист выполняет определённое действие (например, сгибание), а антагонист — прямо противоположное (то есть разгибание). Столь сложный многоступенчатый комплекс обеспечивает слаженные и плавные движения человеческого тела.

К основным свойствам мышечной ткани, обеспечивающим полноценную функциональность структур, относятся:

  • Сократимость — способность к сокращению.
  • Возбудимость — реакция на нервный импульс.
  • Эластичность — изменение длины и диаметра волокон в зависимости от внешнего и внутреннего воздействия.

Сокращение мышц регулируется посредством деятельности нервной системы. Каждая мышца содержит множество нервных окончаний, которые можно условно разделить на 2 разновидности — рецепторы и аффекторы. Чувствительные рецепторы воспринимают скорость и степень растяжения и сокращения, силу воздействия и движения миоцитов. Они могут располагаться свободно, разветвляясь в толще мышцы, или несвободно, переплетаясь в веретенообразный комплекс. Информация о состоянии и положении мышечного волокна из рецепторов поступает в ЦНС, откуда передаётся обратно эффекторам, вызывая их возбуждение и, как следствие, реакцию на полученный импульс.

Сокращение миоцитов осуществляется за счёт проникновения нитей актина между цепочками миозина. При этом общая длина актиновых и миозиновых волокон не изменяется — сокращение наступает из-за изменения длины актиномиозинового комплекса. Такой механизм называется скользящим и сопровождается расходом энергетического запаса организма.

Также в мышцах содержатся нервные волокна, регулирующие процесс обмена веществ и состояние миоцитов в покое. Благодаря этому осуществляется регулировка работы мышечной ткани, предупреждается переутомление и нефизиологичное перерастяжение или сокращение. Такой механизм позволяет адаптировать работу мышц к окружающей среде и обеспечивать полноценную функциональность организма.

Анатомия мышц, их количество и соотношение является физиологической неизменной, зависящей от наследственности и особенностей организма. Тем не менее, грамотно приложенная физическая нагрузка, регулярные тренировки и здоровый образ жизни могут привести к развитию мышечных волокон, более высокой выносливости, силе и устойчивости. Не стоит полагать, что от этого зависит лишь состояние скелетной мускулатуры и рельеф тела, — правильно составленный комплекс занятий улучшает работу ещё и гладких и сердечных миоцитов. Благодаря этому можно запустить круговорот «обратной связи»: развитая с помощью регулярных тренировок сердечная мышца лучше перекачивает кровь по организму, поэтому все органы, включая и скелетные мышцы, получают больше питания и кислорода, необходимого для преодоления нагрузок. А физически развитые скелетные и гладкие мышцы, в свою очередь, лучше удерживают внутренние органы, обеспечивая их полноценную работу.

Зная основы анатомии мышц человека, вы сможете грамотно построить тренировочный процесс, привнести в свою жизнь основы физической активности и вместе с тем улучшить состояние организма в целом.

Перечень мышц тела человека — это… Что такое Перечень мышц тела человека?

Перечень мышц тела человека

Перечень мышц тела человека:

По месту расположения мышцы тела человека разделяют на

  • Мышцы головы, которые с функциональной точки зрения делятся на жевательные и мимические,
  • Мышцы шеи (мышцы, лежащие на шее позади позвоночника традиционно относят к мышцам спины),
  • Мышцы туловища, которые в свою очередь делятся на мышцы груди, мышцы живота и мышцы спины,
  • Мышцы верхних конечностей, которые в свою очередь делятся на мышцы плечевого пояса, мышцы плеча, мышцы предплечья и мышцы кисти,
  • Мышцы нижних конечностей, которые в свою очередь делятся на мышцы тазового пояса, мышцы бедра, мышцы голени и мышцы стопы.
Категория:
  • Мышечная система

Wikimedia Foundation. 2010.

  • Перечень атомных реакторов спроектированных и построенных в Советском Союзе
  • Перечень профессиональных культуристов

Полезное


Смотреть что такое «Перечень мышц тела человека» в других словарях:

  • Части тела человека — Анатомия человека (от греч. ανά, aná  вверх и τομή, tomé  режу)  наука о происхождении и развитии, формах и строении человеческого организма. Анатомия человека изучает внешние формы и пропорции тела человека и его частей, отдельные органы, их… …   Википедия

  • Мышечная система человека — Мышечная система одна из основных биологических подсистем у высших животных, благодаря которой в организме осуществляется движение во всех его проявлениях. Мышечная система отсутствует у одноклеточных и губок, однако и эти животные не лишены… …   Википедия

  • Нога человека — У этого термина существуют и другие значения, см. Нога (значения). Запрос «Ноги» перенаправляется сюда; см. также другие значения. Возможно, эта статья содержит оригинальное исследование. Добавь …   Википедия

  • Скелет человека — …   Википедия

  • ЭВОЛЮЦИЯ ЧЕЛОВЕКА — Фундаментальные процессы генетической изменчивости, адаптации и отбора, которые лежат в основе огромного разнообразия органической жизни, определяют также ход эволюции человека. Изучением процессов становления человека как вида, а также… …   Энциклопедия Кольера

  • Мышцы — Старинный рисунок мышц человека …   Википедия

  • Мышечная система — (мускулатура) одна из основных биологических подсистем у высших животных, благодаря которой в организме осуществляется движение во всех его проявлениях. Мышечная система отсутствует у одноклеточных и губок, однако и эти животные не лишены… …   Википедия

  • Мускулатура — Мышечная система одна из основных биологических подсистем у высших животных, благодаря которой в организме осуществляется движение во всех его проявлениях. Мышечная система отсутствует у одноклеточных и губок, однако и эти животные не лишены… …   Википедия

  • Мышечная группа — Мышечная система одна из основных биологических подсистем у высших животных, благодаря которой в организме осуществляется движение во всех его проявлениях. Мышечная система отсутствует у одноклеточных и губок, однако и эти животные не лишены… …   Википедия

  • Скелетная мышечная ткань — Схема скелетной мышцы в разрезе …   Википедия

Обучение по направлению «Прикладная 3D анатомия и мануальное мышечное тестирование» (курсы) в Самаре с получением сертификата

Учебный план

1 день

  1. Клетка – ткань – орган – система органов – организм человека.
  2. Анатомические оси и плоскости тела человека при диагностике и оценке нарушений осанки.
  3. Кости и костные ориентиры на теле пальпированные на теле друг друга.
  4. Соединение костей – классификация и виды.
  5. Позвоночный столб – межпозвоночные диски, суставы и связки.
  6. Виды повреждений. Лордоз, кифоз, сколиоз.
  7. Мышцы – строение, принцип работы.
  8. Физиология виды дисфункций их устранение (тонус, триггерные точки, спазм, надрыв сухожилия, энтезит).
  9. Основные группы мышц и оптимальный доступ к ним для массажиста.Отрисовка на теле друг друга.

2 день

  1. Мануальное мышечное тестирование – оценка работы отдельных мышц человека,
  2. Диагностика нарушений и определение динамики в работе с пациентом. (отрисовка и отработка навыков) тестирования.
  3. Нервная система – анатомическое строение ЦНС и ход периферических нервов, нервные сплетения. Воздействие массажа.
  4. Кожные покровы – строение кожи, массажные линии Лангера, активаторные точки.
  5. Кровеносная и лимфатическая система.

Курсы и обучение анатомии в Самаре, приобретают всё большую популярность среди специалистов по массажу. На наших курсах по 3D анатомии вы получите практические анатомические знания необходимые для работы массажистов в коррекции нарушений и лечебного воздействия на организм человека.

   Курс будет проходить в интерактивном формате с использованием демонстрационной ленты для моделирования мышц на теле человека и на скелете. Прорисовка мышц друг на друге (бодиарт) и работа на интерактивном экране.

Это отличная возможность научиться пальпировать мышцы, находить возможные патологические отклонения, тестировать подвижность суставов. Для понимания сущности массажа необходимы знания анатомии и физиологии человека.

 

Дополнительная информация

По окончании обучения выдается диплом и сертификат.
В процессе обучения студенты получают подробные конспекты.

Приказ о зачислении

Министерство искусства и культурной политики Ульяновской области

Областное государственное образовательное бюджетное

учреждение среднего профессионального образования

«Ульяновское училище культуры (техникум)»

ПРИКАЗ

08.08.2013 г. № 72/с

г. Ульяновск

«О зачислении студентов»

1. В связи с успешной сдачей творческих испытаний зачислить на первый курс очного отделения ОГОБУ СПО «Ульяновское училище культуры (техникум)» по специальности 071801 «Социально-культурная деятельность» следующих абитуриентов:

Вид « Организация и постановка культурно-массовых мероприятий и театрализованных представлений»

1.

Абрамова Владимира Витальевича

2.

Анейчик Никиту Сергеевича

3.

Арутюнян Вардан Айковича

4.

Безрукову Марию Евгеньевну

5.

Белогрудова Даниила Юрьевича

6.

Ершову Анастасию Алексеевну

7.

Кардынова Андрея Владиславовича

8.

Манькову Александру Сергеевну

9.

Музыкантову Викторию Алексеевну

10.

Семенову Александру Владимировну

11.

Сотникову Елизавету Александровну

12.

Сулину Марину Олеговну

13.

Топтыгину Любовь Владимировну

14.

Чекмарёву Ксению Николаевну

2. В связи с успешной сдачей творческих испытаний зачислить на второй курс очного отделения ОГОБУ СПО «Ульяновское училище культуры (техникум)» по специальности 071801 «Социально-культурная деятельность» следующих абитуриентов:

Вид « Организация и постановка культурно-массовых мероприятий и театрализованных представлений»

Сесёмову Анжелику Александровну

3. В связи с успешной сдачей творческих испытаний зачислить на первый курс очного отделения ОГОБУ СПО «Ульяновское училище культуры (техникум)» по специальности 071501 «Народное художественное творчество» следующих абитуриентов:

Вид «Хореографическое творчество»

1.

Бугрову Веронику Станиславовну

2.

Емелькину Юлию Николаевну

3.

Кадяшеву Олесю Николаевну

4.

Косыреву Александру Анатольевну

5.

Пурлушкину Анастасию Анатольевну

6.

Рыкованову Полину Юрьевну

7.

Сайгушеву Елизавету Юрьевну

8.

Скудину Светлану Евгеньевну

9.

Струеву Анастасию Вадимовну

10.

Сулова Илью Владимировича

11.

Фомич Янека Александровича

12.

Шайдуллину Алсу Рифкатовну

13.

Щербакову Марину Алексеевну

14.

Яковлева Андрея Сергеевича

15.

Яковлеву Ирину Олеговну

На платной основе:

Чурянину Наталью Геннадьевну

Вид «Этнохудожественное творчество»

1.

Акиншину Юлию Сергеевну

2.

Винокурову Анастасию Ивановну

3.

Лазберг Юлию Александровну

4.

Лаптеву Оксану Андреевну

5.

Мартьянову Александру Сергеевну

6.

Мах Валерию Сергеевну

7.

Милованову Веронику Владимировну

8.

Тукаеву Альбину Илдусовну

9.

Шуваеву Анастасию Сергеевну

4. В связи с успешной сдачей творческих испытаний зачислить на первый курс очного отделения ОГОБУ СПО «Ульяновское училище культуры (техникум)» по специальности 072501 «Дизайн» следующих абитуриентов:

1.

Захарову Ангелину Сергеевну

2.

Копылову Юлию Павловну

3.

Круглову Кристину Андреевну

4.

Локтеву Ксению Евгеньевну

5.

Михайлову Любовь Юрьевну

6.

Морозову Алену Сергеевну

7.

Никитину Юлию Алексеевну

8.

Новикову Анастасию Александровну

9.

Половову Татьяну Викторовну

10.

Прусс Анастасию Евгеньевну

11.

Рудевского Владимира Константиновича

12.

Семёнову Полину Константиновну

13.

Улендееву Елизавету Борисовну

14.

Фролову Анну Романовну

15.

Хайдукову Анну Вадимовну

На платной основе:

16.

Алексееву Дарью Игоревну

17.

Багаутдинову Кристину Сергеевну

18.

Гласову Софью Александровну

19.

Губину Анастасию Дмитриевну

20.

Зенкову Анастасию Владимировну

21.

Кафарову Ольгу Борисовну

22.

Лим Кристину Андреевну

23.

Мыльникову Светлану Олеговну

24.

Панёнкову Анну Александровну

25.

Порохня Юлию Денисовну

26.

Разенкову Анастасию Андреевну

27.

Семенову Екатерину Викторовну

28.

Соловей Наталью Евгеньевну

29.

Толстову Ульяну Геннадьевну

30.

Тридворнову Елену Михайловну

31.

Тухтарову Екатерину Алексеевну

32.

Фахретдинову Талию Фарилевну

33.

Феоктистову Татьяну Валерьевну

34.

Хамову Александру Владимировну

35.

Яценко Дарью Владимировну

5. В связи с успешной сдачей творческих испытаний зачислить на второй курс заочного отделения ОГОБУ СПО «Ульяновское училище культуры (техникум)» по специальности 071801 «Социально-культурная деятельность» следующих абитуриентов:

Вид « Организация и постановка культурно-массовых мероприятий и театрализованных представлений»

1.

Абдуряшитову Раилю Курбановну

2.

Белова Андрея Валентиновича

3.

Белову Елену Александровну

4.

Бигдай Светлану Владимировну

5.

Дубровскую Дарью Игоревну

6.

Едиханова Ильнара Наилевича

7.

Краснову Регину Альбертовну

8.

Крылову Зульфию Максутовну

9.

Логачеву Любовь Павловну

10.

Мёдову Ольгу Дмитриевну

11.

Мясникову Людмилу Викторовну

12.

Песчаную Ольгу Михайловну

13.

Рамазанову Галлию Сяитовну

14.

Саламон Ольгу Валериевну

15.

Филиппову Валерию Сергеевну

16.

Яковлеву Гузалию Кямилевну

На платной основе:

17.

Дадашова Расима Ядигаровича

18.

Дронина Юрия Анатольевича

19.

Лазареву Светлану Витальевну

20.

Шибанову Любовь Михайловну

6. На основании личных заявлений зачислить на второй курс заочного отделения ОГОБУ СПО «Ульяновское училище культуры (техникум)» по специальности 071901 «Библиотековедение» следующих абитуриентов:

1.

Астапову Наталью Викторовну

2.

Баратову Наталию Васильевну

3.

Зилотову Татьяну Константиновну

4.

Зинина Сергея Михайловича

5.

Кавказову Евгению Сергеевну

6.

Коренченко Тамару Юрьевну

7.

Куркину Ольгу Геннадьевну

8.

Пахомова Юлия Владимировна

9.

Спиридонову Валентину Викторовну

10.

Фалову Марину Владимировну

11.

Хореву Галину Валерьевну

12.

Чернышеву Екатерину Валентиновну

На платной основе:

13.

Горбатко Оксану Олеговну

14.

Маштакову Елену Александровну

15.

Пискунову Анастасию Александровну

16.

Сулейманову Альфию Ханбяловну

17.

Ходаковскую Наталью Валентиновну

Директор Н.П.Аринина

Электронный справочник «Атлас тела человека»

Издатель в России: «Медиа Хауз»



Системные требования


Операционная система Windows 95/98/Me/2000/XP/Vista
QuickTime 6.0 (инсталлируется с программой)


Описание


Компания «МедиаХауз» выпустила на отечественный компьютерный рынок интерактивный справочник «Атлас тела человека», созданный канадской компанией «QA International». Надо сказать, сделано это чрезвычайно вовремя, учитывая приближающиеся школьные экзамены. Вполне возможно, что и для подготовки к вступительным экзаменам в учебные заведения медицинского профиля этот справочник тоже лишним не будет. Для тех, у кого с изучением курса анатомии прямо скажем «не очень», программа пройдёт под лозунгом «Познай себя!», тем же, кто знает, в чём принципиальная разница между почками и надпочечниками, какую функцию выполняет печень, а какую — желудок, достаточно будет «Вспомнить всё».

Кроме шуток, может для поступления в медицинский ВУЗ этого курса окажется не достаточно (точно не знаю, поскольку никогда не интересовалась, что там спрашивают на вступительном, и в каком объёме), но достойно подготовиться к сдаче школьного экзамена — вполне по силам. Да и для самого себя узнать, к какому врачу бежать, если что-то кольнуло (а Вы с большим процентом вероятности знаете в каком органе), значит — не пропустить болезнь. Ну, это всё лирика, а теперь ближе к теме.
При загрузке Вы выбираете режим работы программы: доступны два варианта — полноэкранный (full screen) и оконный. Программа поставляется на двух компакт-дисках, на каждом из них записаны и материалы энциклопедии, и атласа тела человека, и видео библиотеки, взаимно дополняющие друг друга. Так, из семи разделов Энциклопедии четыре записаны на первом диске, три — на втором; соответствующим образом делятся материалы в Атласе тел и в Видео библиотеке.
Перед началом работы с программой вам предложат прослушать вводный курс «Тело человека» и просмотреть сопутствующую анимацию. Если нет желания всё это смотреть и слушать (например, при обращении ко второму диску), просто воспользуйтесь для пропуска этой части левой кнопкой мыши.

Теперь ознакомимся с управлением программой и содержанием её частей. После просмотра (или пропуска) вводной части Вы попадаете на Главную страницу программы (я бы назвала её главным меню программы).


Здесь расположены три кнопки для перехода в выбранную вами часть программы: в «Энциклопедию», в «Атлас тела человека» или в «Видео библиотеку». При наведении курсора на любую из частей вам любезно сообщат, какой материал находится в этой части программы. Кроме того, для тех, кто не сумел полностью насладиться водной частью программы нет никакой необходимости выходить из программы и запускать её заново: можно просто прослушать вводную ещё раз, воспользовавшись кнопкой в виде кинокадра под интерактивной кнопкой перехода в Атлас.

Итак, начнем знакомство со справочником с его энциклопедической части. В семи разделах Энциклопедии (на обоих дисках) рассматриваются 45 тем. Каждая из тем, в свою очередь, делится на заголовки. Заголовок включает страницы энциклопедии, материалы которых описывают строение определённого органа или процесс, протекающий в организме. Выбрав соответствующую кнопку в главном меню, Вы попадаете в меню Энциклопедии.


Перед вами четыре интерактивные кнопки, соответствующие четырём разделам (на первом диске): «Строение тела» (клеточное — прим. автора), «Строение тела» (мышечное — прим. автора), «Нервная система», «Пять чувств» (аналогично, разделы на втором диске – «Кровообращение», «Дыхание и питание», «Размножение») и соответствующие иллюстративные и поясняющие материалы к ним в частях Атласа и Видео библиотеки. На этом же экране, ниже, расположено окно для просмотра анимации, сопровождающей краткий обзор к выбранному разделу, в нём рассказывают «для чего и из чего». Под экраном находятся кнопки пуска и остановки просмотра, есть также кнопка функции разворачивания изображения на весь экран. Справа выводится интерактивный список тем, входящих в этот раздел. Так, например, раздел «Нервная система» включает пять тем: «Нейроны», «Центральная нервная система», «Головной мозг», «Нервы», «Двигательная функция нервной системы». Каждая тема делится на различное количество заголовков, так, например, в тему «Нервы» входят четыре заголовка: «Сенсорные и двигательные нервы», «Анатомия нерва», «Черепно-мозговые нервы» и «Спинномозговые нервы». Изучая материал этого раздела, вы узнаете, что основа всему — нейроны, их в организме сто миллиардов. Вы узнаете, какие нейроны бывают, каким боком соседствуют с аксонами, что такое синапсис, и почему без них в организме не обойтись. Вы разберётесь, как взаимодействуют центральная и периферическая нервные системы, каким образом происходит управление органами и мышцами организма, чем человеческий мозг отличается от мозга рептилии, что позволяет вам мыслить, говорить, двигаться.

При работе с программой её панель навигации располагается внизу экрана.


Она образована тремя группами кнопок. Левая группа, состоящая из четырёх кнопок, неизменна во время работы, эта группа кнопок осуществляет навигацию внутри частей программы (при наведении курсора на кнопку — читаете её название). Первая кнопка -переход к главной странице программы, кнопки со второй по четвёртую — это кнопки перехода в соответствующую часть программы. Правая, третья, группа кнопок также не изменяется по составу. Здесь находятся кнопки перехода на предыдущую и следующую страницы, печать выбранного материала, справка по работе программы (всё очень подробно и понятно рассказано) и выход из программы. Центральная группа кнопок видоизменяется в зависимости от того, в какой части справочника вы работаете. В части Энциклопедия кнопки этой группы осуществляют навигацию по темам внутри раздела.

Итак, вы выбрали определенный раздел энциклопедии, затем, выбрав в нём интересующую вас тему, вы попадаете на страницу этой темы, в её меню. Здесь также есть окно для просмотра анимационного ролика, сопровождающегося чтением краткого обзора выбранной темы. Ниже расположены интерактивные кнопки (так называемых заголовков). Прежде чем перейти к заголовкам, нужно сказать несколько слов о центральной группе интерактивных кнопок, отвечающих за навигацию внутри темы — с их помощью осуществляется переход по заголовкам. В этой группе всегда столько кнопок, сколько заголовков в рассматриваемой теме плюс одна — первая кнопка, возврат на главную страницу темы, в её меню. При наведении курсора на каждую кнопку появляется название соответствующего заголовка. Кнопки заголовков, которые вы ещё не просмотрели, имеют белый контур. Таким образом, к выбранному заголовку можно перейти, нажимая, либо интерактивную кнопку заголовка на главной странице темы, либо соответствующую кнопку заголовка на панели навигации внизу экрана. В заголовке приводится страница с изображением органа и кратким описанием его частей, а также протекающие процессы. Например, в разделе энциклопедии «Пять чувств» вы выбрали тему «Зрение».


В неё входят несколько заголовков, в частности «Внутреннее строение глазного яблока» и «Как фокусируется глаз». Материал первого рассказывает о строении и предназначении глазного яблока, второго — о том, какой путь предстоит пройти световому лучу, идущему от объекта, прежде чем вы увидите сам этот объект. Заголовок может включать несколько страниц материала,


…их пронумерованные иконки располагаются в верхнем правом углу экрана. Здесь же могут быть приведены фотографии из Видео библиотеки.


Кроме прямой информации есть еще скрытая. Так, в теме «Мышцы» (заголовок «Мышцы лица») вы можете видеть спецзнак — тёмные кружки с белыми крестами,


…кликните на них, и получите дополнительную информацию (в приведённом примере это дополнительные названия групп мышц). Чтобы быстро перейти от одной темы энциклопедии в другую, не обязательно возвращаться на главную страницу раздела, для быстрого перехода предусмотрено всплывающее меню тем, которое появляется, если навести курсор на название раздела в верхнем правом углу экрана. Думаю, вы догадываетесь, что управление в части Энциклопедия на втором диске аналогично.

Воспользуйтесь кнопками первой группы на панели навигации, чтобы перейти к Атласу тела человека. На первом диске в Атласе представлены иллюстрационные материалы по четырем темам: «Внешний вид», «Мышцы», «Скелет», «Нервная система», на втором — по пяти: «Пищевая система», «Сердечнососудистая система», «Половая система», «Мочевая система», «Дыхательная система». Справа от кнопок выбора тем появляется вводный текст по выбранной теме и ниже интерактивный перечень страниц Атласа.


При выборе страницы Вы попадаете на неё, а на интерактивной панели управления появляется группа кнопок, осуществляющих навигацию по темам внутри Атласа. Количество кнопок в группе равно количеству тем плюс одна, первая, возврат к главной странице Атласа — его меню.

На каждой странице Атласа слева, в колонку, расположены кнопки перехода по страницам, входящим в соответствующую тему (либо пользуйтесь панелью управления внизу экрана — кнопки возврата к предыдущей странице или перехода к следующей).


На странице атласа представлено изображение одного или нескольких органов, части системы организма и даны пояснительные ссылки о названии и их назначении в организме. При наличии соответствующей таблички (см. Энциклопедию) Вы можете перейти в Энциклопедию и просмотреть там информацию, относящуюся к рассматриваемой теме.

В третьей части программы, в Видео библиотеке, размещенный иллюстрационный материал соответствует разделам Энциклопедии, т.е. четыре раздела на первом диске, три — на втором, кроме того, на каждом диске добавлена вводная часть «Тело человека».


Страница Видео библиотеки содержит в левой части кнопки, соответствующие разделам энциклопедии, правее расположено окно просмотра анимации и видео материалов, которые Вы выбираете, нажимая интерактивные кнопки, расположенные на панели внизу страницы, количество кнопок соответствует количеству тем и названиям в соответствующем разделе энциклопедии. Ознакомившись в энциклопедии, например, с нейронами, их строением и классификацией, в части Видео библиотека вы сможете увидеть процесс передачи нейронами импульсов друг другу.

Резюмируя, хочется сказать следующее: программа содержит большое количество познавательного материала, рассматривая который на досуге — Вы не пожалеете о проведённом времени.

Рисунок, 4 класс «Изучение тела человека» Тема второго — презентация на Slide-Share.ru 🎓

1

Первый слайд презентации

Рисунок, 4 класс Тема четвёртой четверти: «Изучение тела человека» Тема второго урока: «Скелет и мышцы»

Изображение слайда

2

Слайд 2

Скеле́т челове́ка  ( др.-греч.   σκελετος  — «высушенный») — совокупность  костей человеческого  организма, пассивная часть  опорно-двигательного аппарата. Служит опорой мягким тканям, точкой приложения мышц, вместилищем и защитой внутренних органов. Скелет взрослого человека состоит из 206 костей. Почти все они объединяются в единое целое с помощью суставов, связок и других соединений.

Изображение слайда

3

Слайд 3

Чтобы правильно изображать человека, первоначально изучают и делают зарисовки скелета человека.

Изображение слайда

4

Слайд 4

Задание: нарисуйте, соблюдая пропорции, скелет человека. Подпишите названия основных костей. Рисуем по схеме простым карандашом. 1 2 Наметим основу скелета Нарисуйте череп

Изображение слайда

5

Слайд 5

3 4 Рисуем шею, ребра и плечевые кости Теперь нарисуйте локтевые кости и далее нарисуйте кости пальцев.

Изображение слайда

6

Слайд 6

5 Н арисуйте позвонки и кости малого таза, а далее начните рисовать кости ног. О сталось нарисовать берцовой и малоберцовой кости, потом нарисовать ступни. 6

Изображение слайда

7

Слайд 7

7 Рисунок скелета закончен. Подпишите названия костей Фотографию рисунка пришлите мне ВКонтакте

Изображение слайда

8

Слайд 8

Изображение слайда

9

Слайд 9

Знакомимся с мышечной системой человека

Изображение слайда

10

Слайд 10

Наброски и учебный рисунок руки (кости и мышцы)

Изображение слайда

11

Слайд 11

Сегодня познакомимся с мышцами руки и как нарисовать руку в разных поворотах.

Изображение слайда

12

Слайд 12

Итак, рука состоит из: Плечо Предплечье Кисть

Изображение слайда

13

Слайд 13

И зучите мышцы, а также в рисунках учитывайте их пропорциональность

Изображение слайда

14

Слайд 14

Теперь детально рассмотрим группы мышц, обратите внимание что в зависимости от сжатости руки в кулак, или напротив расслабленности мышцы будут менять свою форму.

Изображение слайда

15

Слайд 15

Изучив костное и мышечное строение тела человека, мы можем переходить непосредственно к изображению. Если вы рисуете крупно и детально руку мужчины, то в первую очередь прорисуйте схематически кость, мышцы и лишь потом наводите контуры. Таким образом, будет соблюдена максимальная пропорциональность.

Изображение слайда

16

Слайд 16

П осмотрите, как рисуется рука, когда ладонь повернута в нашу сторону (супинация).

Изображение слайда

17

Слайд 17

Если необходимо нарисовать согнутую в локте руку, соблюдайте естественный изгиб, а также направление ладони.

Изображение слайда

18

Слайд 18

А на этих картинках детально рассматривается рисование руки с предплечьями. Посмотрите, как изменяются формы руки в зависимости от движения кисти и ракурса.

Изображение слайда

19

Слайд 19

Изображение слайда

20

Слайд 20

Также часто необходимо нарисовать руку в определенном движении. Протянутая рука, рукопожатие и многое другое. Для наглядности движения ознакомитесь с нижеприведенной схемой. Она поможет не допустить анатомических ошибок в работе.

Изображение слайда

21

Слайд 21

Также прорабатывая все нюансы руки после того как нарисуете, проверьте по схеме самую широкую и самую узкую часть предплечья, а также плавный рельефный переход между ними.

Изображение слайда

22

Последний слайд презентации: Рисунок, 4 класс Тема четвёртой четверти: «Изучение тела человека» Тема второго

Задание: нарисуйте на листе форматом А4 руку с мышцами, любую по вашему желанию. В работе используем простой карандаш. С помощью штриха и тона передайте форму и объём мышц. Жду ваших работ ВКонтакте.

Изображение слайда

Структура и функция скелетных мышц — Musculoskeletal Genetics

Мышечная система отвечает за движение человеческого тела, позу, движение веществ внутри тела и за выделение тепла телом. Существует около 700 известных и названных мышц, и, кроме того, мышечная ткань также находится внутри сердца, органов пищеварения и кровеносных сосудов.

В организме человека есть 3 основных типа мышц:

По материалам http: // sciencehumanbodytribute.weebly.com/muscular-system.html

Скелетная мышца — это произвольная мышца, что означает, что мы можем активно контролировать ее функцию. Он прикреплен к кости и образует отдельный орган из мышечной ткани, кровеносных сосудов, сухожилий и нервов, который покрывает наши кости и позволяет двигаться.

Скелетные мышцы часто существуют парами, при этом одна мышца является основным двигателем, а другая действует как антагонист. Например, когда вы сгибаете руку, ваши бицепсы сокращаются, а трицепсы расслаблены.Когда ваша рука возвращается в вытянутое положение, сокращаются трицепсы, а бицепсы расслабляются.

Скелетная мышца — удивительная ткань со сложной структурой. Он состоит из удлиненных многоядерных клеток, называемых миоцитами (или миофибрами). Мышечные клетки могут иметь длину от 1 мм до 30 см. Самая длинная мышечная клетка в нашем теле находится в портняжной мышце и имеет длину 30 см (почти 12 дюймов!).

Из биологических форумов.com

Под микроскопом отдельные мышечные клетки кажутся полосатыми (см. Изображение ниже). Это происходит из-за высокоорганизованной структуры мышечных волокон, где a ctin и миозиновые миофиламенты сложены и перекрываются в регулярных повторяющихся массивах, образуя саркомеры. Нити актина и миозина скользят друг относительно друга и отвечают за сокращение мышц.

Чтобы увидеть, как мышцы сокращаются и работают, посмотрите видео здесь .

Энергия для мышечной функции поступает из внутриклеточных органелл, называемых митохондриями . Митохондрии — это электростанции каждой клетки нашего тела, отвечающие за доставку энергии, необходимой клеткам для их функционирования.

Мышцы иннервируются мотонейронами . Моторный нейрон и окруженные им мышечные волокна образуют двигательную единицу . Размер двигательных единиц варьируется в организме в зависимости от функции мышцы. Для тонких движений (глаз) на нейрон приходится меньше мышечных волокон, что позволяет совершать точные движения.Мышцы, требующие большой силы, имеют много мышечных волокон на единицу. Тело может контролировать силу, решая, сколько двигательных единиц оно активирует для данной функции.

Из http://www.rtmsd.org

В нашем теле есть два типа скелетных мышц, которые различаются по функциям. Медленно сокращающиеся мышечные волокна лучше подходят для тренировок на выносливость и могут работать долгое время, не уставая. Быстро сокращающиеся мышцы хороши для быстрых движений, поскольку они быстро сокращаются, но быстро устают и потребляют много энергии.

Большинство наших мышц состоит из смеси медленных и быстро сокращающихся мышечных волокон. Однако мышцы, участвующие в поддержании осанки, содержат в основном медленно сокращающиеся мышечные волокна, а мышцы, отвечающие за движения глаз, состоят из быстро сокращающихся мышечных волокон.

И, чтобы немного повеселиться, вот прекрасная песня, описывающая все мышцы ног:

Структура, функция и контроль опорно-двигательного аппарата человека

Образец цитирования: Murphy AC, Muldoon SF, Baker D, Lastowka A, Bennett B, Yang M, et al.(2018) Структура, функции и контроль опорно-двигательного аппарата человека. PLoS Biol 16 (1): e2002811. https://doi.org/10.1371/journal.pbio.2002811

Академический редактор: Грэм Тейлор, Оксфордский университет, Соединенное Королевство Великобритании и Северной Ирландии

Поступила: 21 апреля 2017 г .; Принят к печати: 15 декабря 2017 г .; Опубликован: 18 января 2018 г.

Авторские права: © 2018 Murphy et al.Это статья в открытом доступе, распространяемая в соответствии с условиями лицензии Creative Commons Attribution License, которая разрешает неограниченное использование, распространение и воспроизведение на любом носителе при условии указания автора и источника.

Доступность данных: Все соответствующие данные находятся в документе и его файлах с вспомогательной информацией. Два использованных скелетно-мышечных графика, а также распределение мышечных сообществ и данные, использованные для создания всех цифр, можно найти по адресу DOI: 10.5281 / zenodo.1069104.

Финансирование: Национальный научный фонд (номер гранта PHY-1554488). Спонсор не имел никакого отношения к дизайну исследования, сбору и анализу данных, принятию решения о публикации или подготовке рукописи.

Конкурирующие интересы: Авторы заявили об отсутствии конкурирующих интересов.

Введение

Взаимосвязанная природа человеческого тела долгое время была предметом научных исследований и суеверных верований. От древних юморов, связывающих сердце, печень, селезенку и мозг смелостью, спокойствием и надеждой [1], до современного понимания связи кишечника и мозга [2], люди склонны искать взаимосвязи между разрозненными частями тела. объяснять сложные явления.Тем не менее, напряжение остается между этой базовой концептуализацией человеческого тела и редукционизмом, неявным в современной науке [3]. Понимание всей системы часто относят к футуристическому миру, в то время как отдельные эксперименты уточняют наше понимание мельчайших составных частей.

Опорно-двигательный аппарат человека не является исключением из этой дихотомии. В то время как медицинская практика сосредоточена на кистях, стопах или лодыжках, клиницисты знают, что травмы одной части опорно-двигательного аппарата обязательно влияют на работу других (даже отдаленно удаленных) частей [4].Травма лодыжки может изменить характер походки, что приведет к хронической боли в спине; травма плеча может изменить осанку и вызвать дискомфорт в шее. Понимание фундаментальных отношений между фокальной структурой и потенциальными удаленными взаимодействиями требует целостного подхода.

Здесь мы подробно описываем такой подход. Наша концептуальная основа мотивирована недавними теоретическими достижениями в сетевой науке [5], которая представляет собой развивающуюся дисциплину, построенную на упорядоченном слиянии математики (в частности, теории графов [6]) и физики (в частности, статистической механики [7]), компьютеров. наука, статистика [8] и системная инженерия.Подход упрощает сложные системы, разграничивая их компоненты и отображая паттерн взаимодействия между этими компонентами [9]. Это представление кажется особенно подходящим для изучения опорно-двигательного аппарата человека, который состоит из костей и соединяющих их мышц. В этом исследовании мы использовали этот подход для оценки структуры, функции и контроля опорно-двигательного аппарата.

Использование сетевой науки для понимания опорно-двигательного аппарата в последние годы увеличилось [10].Однако этот каркас в основном использовался для исследования свойств локальных мышечных или костных сетей. Например, была исследована местная структура черепа, чтобы выяснить, как можно классифицировать кости [11]. Кроме того, были проведены исследования топологии костно-мышечной сети позвоночника для оценки напряжений и деформаций в костях [12]. Существует несколько исследований, посвященных всей опорно-двигательной системе, хотя в них не используются математические инструменты, которые мы использовали здесь [13,14].Настоящее исследование отличается от предыдущих работ оценкой всей опорно-двигательной системы в сочетании с математическими инструментами науки о сетях.

В этом более широком контексте мы сосредоточились на проблеме реабилитации после травм скелетных мышц или коры головного мозга. Прямое повреждение мышцы или связанного с ней сухожилия или связки влияет на другие мышцы через компенсаторные механизмы тела [15]. Точно так же потеря использования определенной мышцы или группы мышц из-за прямого повреждения коры головного мозга может привести к компенсаторному использованию альтернативных мышц [16,17].То, как структурированы взаимосвязи опорно-двигательного аппарата и как они функционируют, напрямую ограничивает то, как повреждение определенной мышцы повлияет на опорно-двигательный аппарат в целом. Понимание этих взаимосвязей может дать столь необходимое понимание того, какие мышцы больше всего подвержены риску вторичной травмы из-за компенсаторных изменений, возникающих в результате очаговой травмы, тем самым давая основу для более комплексных подходов к реабилитации. Кроме того, понимание того, как кора головного мозга отображается не только на отдельные мышцы, но и на группы топологически близких мышц, может помочь в будущих эмпирических исследованиях взаимосвязи между очаговыми повреждениями (включая инсульт) моторной коры и риском вторичного повреждения.

Материалы и методы

Строительство сети

Используя таблицы Hosford Muscle [18], мы построили гиперграф опорно-двигательного аппарата, представив 173 кости (некоторые из них на самом деле являются связками и сухожилиями) в виде узлов и 270 мышц в виде гиперребер, соединяющих эти узлы (происхождение мышц и точки прикрепления перечислены в таблице S9. ). Этот гиперграф также можно интерпретировать как двудольную сеть, в которой мышцы являются одной группой, а кости — второй группой (рис. 1а). Матрица заболеваемости C 173 × 270 скелетно-мышечной сети, таким образом, определяется как C ij = 1, если v i ∈ e j и 0 в противном случае, где V = {v 1 , · · ·, v 173 } — это набор узлов (костей), а E = {e 1 , · · ·, e 270 } — набор гиперребер (мышц).Это гиперграфическое представление тела устраняет большую часть сложности опорно-двигательного аппарата, кодируя только то, какие мышцы прикрепляются к каким костям. Весь анализ применялся только к одной половине (левой или правой) тела, потому что каждое полушарие головного мозга контролирует только противоположную сторону тела. Поэтому мы еще больше упростили нашу модель, допустив лево-правую симметрию; на любых фигурах, на которых изображены обе половины тела, вторая половина присутствует исключительно для визуальной интуиции.

Рис. 1. Схема представления данных и вычислительных методов.

(a) Скелетно-мышечная сеть была сначала преобразована в двудольную матрицу, где 1/0 указывает на наличие / отсутствие связи между мышцами и костями. (b) Сообщества топологически связанных мышц идентифицируются путем (1) преобразования гиперграфа в граф мышца-мышцы, в котором каждая запись кодирует количество общих костей каждой пары мышц, и (2) впоследствии мышцы были разбиты на сообщества , в котором составляющие члены более плотно связаны с другими членами своего сообщества, чем с членами других сообществ.(c) Для облегчения пертурбаций опорно-двигательная сеть была физически встроена, так что кости (узлы) изначально располагались в их правильных анатомических положениях. (d) Чтобы понять влияние отдельных мышц на взаимосвязанную систему, все узлы, связанные выбранным гиперребром, были возмущены в четвертом пространственном измерении.

https://doi.org/10.1371/journal.pbio.2002811.g001

Костно-ориентированный граф A и мышечный граф B (рис. 1b) — это просто одномодовые проекции C.Проекция на кости A = C T C, а проекция на мышцы B = CC T . Затем диагональные элементы были установлены равными нулю, в результате чего мы получили взвешенную матрицу смежности [5]. Мы получили оценочные анатомические местоположения центра масс каждой мышцы (и кости), изучив анатомические тексты [19] и оценив x-, y- и z-координаты для отображения на графическом представлении человеческого тела (рис. 1c). .

Расчет баллов удара

Чтобы измерить потенциальную функциональную роль каждой мышцы в сети, мы использовали классический пертурбативный подход.Чтобы максимизировать простоту и потенциал для фундаментальной интуиции, мы смоделировали опорно-двигательную систему как систему точечных масс (костей) и пружин (мышц). Мы растянули мышечную пружину и наблюдали влияние этого возмущения на расположение всех остальных мышц. Физически, чтобы повредить мышцу, мы смещали все кости, связанные с этой мышцей, на одинаковую величину и в одном направлении, растягивая мышцу, и удерживали эти кости на новом месте. Этот процесс также математически эквивалентен простому изменению жесткости пружины, относящейся к конкретной мышечной пружине.Затем системе позволяли достичь равновесия. Мы зафиксировали кости по средней линии и по периферии в пространстве, чтобы предотвратить смещение системы. Чтобы количественно оценить влияние возмущения этой единственной мышечной пружины, мы определили движение узла следующим образом: где l ij — смещение между узлами i и j, x ij — невозмущенное расстояние между узлами i и j, m — масса узла (которую мы установили равной единице для всех узлов в сети) , β = 1 — коэффициент демпфирования, r i — положение узла i , A — взвешенная матрица смежности графа, ориентированного на кости, и S ij представляет собой сумму всех сил пружин мышцы, к которым подключены узлы i и j.Чтобы нормализовать восстанавливающую силу мышц на узлах, допустим силу пружины мышцы q 1 / (k — 1). Здесь мы установили, что все кости имеют одинаковый вес, а все мышцы имеют одинаковую жесткость пружины, что является упрощением реальной физической анатомии. Для обсуждения того, как учесть дополнительные физические свойства, такие как масса кости и мышечная сила, а также дополнительные результаты с использованием этих свойств, см. S5 Text. Более того, образцы траекторий, которые дают интуитивное представление о динамике нашей модели, были включены в вспомогательную информацию (S8 рис.).

Чтобы измерить потенциальную функциональную роль каждой мышцы в сети, мы растянули гиперребер мышцы и измерили влияние возмущения на остальную часть сети. Вместо того, чтобы возмущать сеть в каком-то произвольном трехмерном направлении, мы расширили объем нашей симуляции до четвертого измерения. При возмущении мышцы мы смещали все узлы (кости), содержащиеся в этом гиперребре мышцы, на постоянный вектор в четвертом измерении и удерживали их этим смещением (рис. 1d).Затем возмущение в ответ прокатилось по сети пружин. Мы последовательно растягивали каждую мышечную гиперреберь и определили оценку воздействия этого возмущения как общее расстояние, пройденное всеми узлами опорно-двигательного аппарата от их исходных положений. Величина смещения — это суммарное смещение по всем временным точкам, от начала возмущения до соответствующего отсечки времени уравновешивания. Здесь мы нашли равновесие системы, позволив динамике выровняться в течение достаточного периода времени.Обратите внимание, что равновесие также может быть решено с использованием стационарного, нединамического подхода; мы решили использовать динамику в этом случае для более широкой поддержки будущих приложений.

Отклонение оценки удара

Для каждой мышцы мы рассчитали индекс, который количественно определяет, насколько оценка воздействия этой мышцы отклоняется от ожидаемой с учетом степени ее гиперребер; мы называем этот показатель «ударным отклонением». Мы начинаем с построения нулевой модели, которая определяет ожидаемое воздействие при наборе статистических допущений.В текущем исследовании мы использовали несколько различных нулевых моделей с разными наборами допущений, которые мы подробно рассмотрим в следующих разделах. Отклонение воздействия рассчитывалось следующим образом: мы вычисляли среднее значение, стандартное отклонение и 95% доверительные интервалы (ДИ) для каждой из категорий степени нулевого гиперграфа из ансамбля из 100 нулевых гиперграфов. Расстояние от данной мышцы до среднего значения ± 95% ДИ (в зависимости от того, что ближе всего) было вычислено и разделено на стандартное отклонение этого распределения степеней нулевого гиперграфа.Таким образом, мы рассчитали отклонение от ожидаемого значения в стандартных отклонениях (аналогично z-баллу). Таблица 1 содержит мышцы, которые лежат за пределами 95% ДИ коэффициентов отклонения относительно степени их гиперребер. Мышцы можно естественным образом сгруппировать в соответствии с гомункулом, грубым одномерным представлением того, как контрольные области мышц группируются в моторную кору. Для данной группы гомункулов мы рассчитали коэффициент отклонения как количество мышц с положительным отклонением, деленное на общее количество мышц в группе (таблица 2).

Таблица 1. Мышцы с большей или меньшей нагрузкой, чем ожидалось в модели нулевого гиперграфа.

Мышцы на левой стороне оказывают меньшее воздействие, чем ожидалось, учитывая степень их гиперреберности: их воздействие более чем на 1,96 стандартного отклонения ниже среднего, что указывает на то, что они лежат за пределами 95% доверительного интервала распределения. Мышцы на правой стороне оказывают большее воздействие, чем ожидалось, учитывая степень их гиперреберности: их воздействие более чем на 1,96 стандартного отклонения превышает среднее значение в порядке от наибольшего к наименьшему.В этой таблице показаны мышцы, которые имели наибольшую положительную и наибольшую отрицательную разницу в воздействии, по сравнению с контрольными группами подобранной степени.

https://doi.org/10.1371/journal.pbio.2002811.t001

Таблица 2. Категории гомункулов, у которых все мышцы членов имеют большее влияние, чем ожидалось, или все меньше, чем ожидалось, по сравнению с нулевыми гиперграфами.

Категории слева полностью состоят из мышц с меньшим воздействием, чем ожидалось, по сравнению с контрольной группой с подобранной степенью.Категории справа полностью состоят из мышц, оказывающих большее воздействие, чем ожидалось, по сравнению с контрольными группами с подобранной степенью.

https://doi.org/10.1371/journal.pbio.2002811.t002

Обнаружение сообщества

Чтобы понять как функцию, так и контроль над опорно-двигательной системой, мы были заинтересованы в определении групп плотно связанных между собой мышц с использованием подхода, основанного на данных. Мы выполнили тип обнаружения сообщества, максимизируя функцию качества модульности, введенную Ньюманом [20]: где P ij — ожидаемый вес ребра в нулевой модели Ньюмана-Гирвана, узел i назначен сообществу g i , узел j назначен сообществу g j , а δ — дельта-функция Кронекера.Максимизируя Q, мы получили разделение узлов (мускулов) на сообщества, так что узлы в одном сообществе были более плотно взаимосвязаны, чем ожидалось в сетевой нулевой модели (рис. 1b, справа).

Здесь мы также использовали параметр разрешения, чтобы настроить размер и количество обнаруженных сообществ, чтобы количество обнаруженных сообществ соответствовало количеству групп внутри гомункула для прямого сравнения. В частности, мы использовали параметр разрешения γ = 4,3, чтобы разделить мышечно-ориентированную матрицу на 22 сообщества (см. Таблицу S8).Мы начали с переопределения исходной ориентированной на мышцы матрицы B, следуя Jutla et al. [21]; мы положили k = Σ i B i , j , а затем применили локально жадный алгоритм максимизации модульности типа Лувена к скорректированной матрице [22].

Указанный выше метод обнаружения сообществ недетерминирован [23]. То есть одно и то же решение не будет достигнуто при каждом отдельном запуске алгоритма. Следовательно, необходимо убедиться, что используемые назначения сообщества хорошо представляют сеть, а не только локальный максимум ландшафта.Поэтому мы максимально увеличили функцию качества модульности в 100 раз, получив 100 различных заданий от сообщества. Из этого набора решений мы определили надежную репрезентативную консенсусную структуру сообщества [24]. S1 Рис. Показывает, как обнаруженные сообщества изменяются в зависимости от параметра разрешения для мышечно-ориентированной сети.

Сетевые нулевые модели

Мы используем перепрограммированные графики в качестве нулевой модели, с которой сравниваем эмпирические данные. В частности, мы построили нулевой гиперграф, перемонтировав мышцы, которым присвоена одна и та же категория (таблица 3, определенная ниже), равномерно и случайным образом.Таким образом, мышцы мизинца будут перестроены только внутри мизинца, и аналогично для мышц других категорий. Важно отметить, что этот метод также сохраняет степень каждой мышцы, а также степень распределения всего гиперграфа.

Категории были присвоены мышцам таким образом, чтобы общая топология опорно-двигательного аппарата была в значительной степени сохранена, а изменения были локализованы в пространстве. В частности, мы разделили мышцы на сообщества размером примерно 3, так что каждая мышца была сгруппирована с двумя мышцами, которые наиболее топологически связаны.Затем мы переставлялись только внутри этих небольших групп. Это управляемый данными способ изменения связей только внутри очень небольших групп связанных мышц.

Чтобы разделить мышцы на сообщества, мы применили жадный подход к максимизации модульности, аналогичный предыдущей работе [25]. В частности, мы максимизировали модульность системы, так что изменение модульности для перемещения узла n из сообщества c ‘в сообщество c определяется выражением Здесь H — матрица степени от узла к модулю, B ′ — скорректированная матрица, ориентированная на мышцы, а V — штрафной член, гарантирующий, что сообщества будут небольшими и примерно одинакового размера.Конкретно, где N — общее количество узлов в системе, c j — индикаторная переменная, кодирующая назначение сообществом узла j, а δ — дельта-функция Кронекера. Более того, где K обозначает общее количество сообществ. Этот термин наказывает определение набора сообществ, которые сильно различаются по размеру.

Многомерное масштабирование

Для проведения многомерного масштабирования (MDS) в сети, ориентированной на мышцы, взвешенная матрица смежности, ориентированная на мышцы, была упрощена до двоичной матрицы (все ненулевые элементы установлены равными 1).На основе этих данных была построена матрица расстояний D, элементы D ij которой равны длине кратчайшего пути между мышцами i и j, или равны 0, если пути не существует. Затем к этой матрице расстояний применяется MDS, чтобы получить ее первый главный компонент с помощью функции MATLAB cmdscale.m. Для построения бинарной матрицы был установлен порог 0, и все значения выше этого порога были преобразованы в 1. Однако, чтобы сделать анализ устойчивым к этому выбору, мы исследовали диапазон пороговых значений, чтобы убедиться, что результаты инвариантны относительно порог.Верхняя граница порогового диапазона была установлена ​​путем определения максимального значения, при котором будет поддерживаться полносвязная матрица; в противном случае матрица расстояний D имела бы элементы бесконечного веса. В нашем случае это значение составило 0,0556 × max (B ′). В пределах этого диапазона пороговых значений (т.е. для всех пороговых значений, приводящих к полностью связанным матрицам) результаты были качественно согласованными. В качестве дополнительного анализа мы также использовали метод построения матрицы расстояний из взвешенной матрицы смежности, чтобы исключить пороговую обработку (S5 Fig), и мы снова наблюдали качественно согласованные результаты.

Данные о мышечных травмах

Мы рассчитали корреляцию между оценкой удара и временем восстановления после мышечной травмы. Время восстановления после травм было взято из литературы по спортивной медицине и включало травмы трехглавой мышцы плеча и плечевых мышц [26]; мышцы большого пальца [27]; latissimus dorsi и teres major [28]; двуглавая мышца плеча [29]; голеностопные мышцы [30]; мышцы шеи [31]; мышцы челюсти [32]; мышцы бедра [33]; мышцы глаз / век [34]; и мышцы колена [35], локтя [36] и запястья / кисти [37].Время восстановления и соответствующие ссылки, перечисленные в таблице 4, представляют собой среднее время восстановления, полученное в результате популяционных исследований. Если в литературе сообщалось о диапазоне различных уровней тяжести и связанных с ними сроков восстановления для конкретной травмы, выбирался наименее тяжелый уровень. Если травма была зарегистрирована для группы мышц, а не для одной мышцы, отклонение оценки удара для этой группы усреднялось вместе. Точки данных для групп мышц были взвешены в соответствии с количеством мышц в этой группе с целью линейной подгонки.Подгонка была произведена с использованием функции MATLAB, fitlm.m, с параметром «Robust», установленным на «on». Устойчивая регрессия — это метод регрессии, разработанный, чтобы быть менее чувствительным к выбросам в данных, при котором выбросы имеют пониженный вес в регрессионной модели.

Данные области соматотопической репрезентации

Мы вычислили корреляцию между отклонением оценки воздействия и площадью соматотопической репрезентации, относящейся к определенной группе мышц. Ареалы представительства были собраны из двух отдельных источников [38,39].Объемы и соответствующие ссылки перечислены в Таблице 5. В обоих исследованиях испытуемых просили повторно сформулировать сустав, и были записаны объемы областей первичной моторной коры, которые претерпели наибольшие изменения в BOLD-сигнале. Затем мы рассчитали коэффициент корреляции между объемами коры и средним воздействием всех мышц, связанных с этим суставом, как определено в таблицах Hosford Muscle. Мы обнаружили значительную линейную корреляцию между двумя показателями с помощью функции MATLAB, fitlm.м, при этом для параметра «Надежность» установлено значение «Вкл.».

Результаты

Структура опорно-двигательного аппарата человека

Чтобы изучить структурные взаимосвязи опорно-двигательного аппарата человека, мы использовали подход гиперграфа. Основываясь на последних достижениях сетевой науки [5], мы исследовали опорно-двигательный аппарат как сеть, в которой кости (сетевые узлы) соединены друг с другом мышцами (сетевые гиперребра). Гиперребро — это объект, соединяющий несколько узлов; мышцы соединяют несколько костей через точки начала и вставки.Степень гиперребра k равна количеству узлов, которые оно соединяет; таким образом, степень мышцы — это количество костей, с которыми она контактирует. Например, трапеция — это гиперребро высокой степени, которое связывает 25 костей лопатки и позвоночника; Напротив, приводящая мышца большого пальца представляет собой гиперребро низкой степени, которое соединяет 7 костей руки (Рис. 2a и 2b). Набор гиперребер (мышц) с общими узлами (костями) называется гиперграфом: граф H = (V, E) с N узлами и M гиперребрами, где V = {v 1 , …, v N } — это набор узлов, а E = {e 1 , …, e M } — набор гиперребер.

Рис. 2. Структура гиперграфа.

(a) Слева: анатомический рисунок трапеции. Справа: преобразование трапеции в гиперребро (красный; степень k = 25), соединяющее 25 узлов (костей) на голове, плече и позвоночнике. (b) Приводящая мышца большого пальца, соединяющая 7 костей руки. (в) Пространственная проекция распределения степеней гиперребер на тело человека. Гиперребра высокой степени сконцентрированы в основном в ядре. (d) Скелетно-мышечная сеть отображается в виде двудольной матрицы (1 = соединена, в противном случае 0).(e) Распределение степени гиперребра для гиперграфа опорно-двигательного аппарата, которое значительно отличается от ожидаемого в случайном гиперграфе. Данные доступны для (e) в DOI : 10.5281 / zenodo.1069104.

https://doi.org/10.1371/journal.pbio.2002811.g002

Представление опорно-двигательного аппарата человека в виде гиперграфа облегчает количественную оценку его структуры (рис. 2c). Мы заметили, что распределение степени гипреберья является тяжелым: большинство мышц связывают 2 кости, а несколько мышц связывают многие кости (рис. 2d и 2e).Наклон распределения степеней существенно отличается от случайных сетей (двухвыборочный критерий Колмогорова-Смирнова, KS = 0,37, p <0,0001, см. Материалы и методы) [5], что свидетельствует о наличии мышц неожиданно низкой и высокая степень (рис. 2д).

Функция опорно-двигательного аппарата человека

Чтобы исследовать функциональную роль мышц в скелетно-мышечной сети, мы использовали упрощенную модель опорно-двигательного аппарата и попытались выяснить, может ли эта модель генерировать полезные клинические корреляты.Мы реализовали физическую модель, в которой кости образуют основной каркас тела, а мышцы скрепляют эту структуру. Каждый узел (кость) представлен как масса, пространственное расположение и движение которой физически ограничены гиперребрами (мышцами), с которыми он связан. В частности, кости — это точки, расположенные в их центре масс, заимствованные из текстов по анатомии [19], а мышцы — это пружины (затухающие гармонические осцилляторы), соединяющие эти точки [40,41]; для гиперребра степени k мы создали k (k — 1) / 2 пружин, соединяющих k узлов.То есть для мышцы, соединяющей k костей, мы разместили пружины так, чтобы каждая из k мышц имела прямое пружинное соединение с каждой из других k — 1 костей.

Затем мы взволновали каждую из 270 мышц тела и вычислили их оценку воздействия в сети (см. Материалы и методы и рис. 1c и 1d). Когда мышца физически смещается, она вызывает волнообразное смещение других мышц по всей сети. Оценка удара мышцы — это среднее смещение всех костей (и косвенно мышц) в результате его первоначального смещения.Мы наблюдали значительную положительную корреляцию между степенью мышц и оценкой воздействия (F (1,268) = 23,3, R 2 = 0,45, p <0,00001; рис. 3a), предполагая, что структура гиперребра определяет функциональную роль мышц в опорно-двигательном аппарате. сеть. Мышцы с большим количеством точек прикрепления и начала имеют большее влияние на опорно-двигательную систему при возмущении, чем мышцы с небольшим количеством точек прикрепления и начала [42]. Мы можем получить более полное представление о результатах этого анализа, подробно изучив взаимосвязь между оценкой воздействия и статистическими показателями топологии сети.На рис. S11 мы показываем, что функция сети, измеренная с помощью оценки воздействия, значительно коррелировала со средней длиной кратчайшего пути. Хотя сетевая статистика статична по своей природе, их функциональная интерпретация обеспечивается пертурбативным моделированием динамики системы.

Рис. 3. Исследование опорно-двигательного аппарата.

(a) Оценка удара, построенная как функция степени гиперребра для модели нулевого гиперграфа и наблюдаемого гиперграфа опорно-двигательного аппарата.(b) Отклонение оценки воздействия коррелирует со временем восстановления мышц после травмы мышц или групп мышц (F (1,12) = 37,3, R 2 = 0,757, p <0,0001). Заштрихованные области указывают 95% доверительный интервал, а точки данных масштабируются в соответствии с количеством включенных мышц. График пронумерован следующим образом, что соответствует таблице 4: трицепс (1), большой палец (2), широчайшая мышца спины (3), двуглавая мышца плеча (4), голеностопный сустав (5), шея (6), челюсть (7), плечо. (8), большая круглая (9), бедро (10), глазные мышцы (11), колено (12), локоть (13), запястье / кисть (14). Данные доступны в DOI : 10.5281 / zenodo.1069104.

https://doi.org/10.1371/journal.pbio.2002811.g003

В качестве руководства для интерпретации важно отметить, что оценка воздействия, хотя и в значительной степени коррелирована со степенью мышечной массы, не полностью с ее помощью (рис. 3a). . Вместо этого, структура локальной сети, окружающей мышцу, также играет важную роль в ее функциональном воздействии и способности восстанавливаться. Чтобы лучше количественно оценить влияние этой структуры локальной сети, мы спросили, существуют ли мышцы, которые имели значительно более высокие или значительно более низкие оценки воздействия, чем ожидалось в нулевой сети.Мы определили положительное (отрицательное) отклонение оценки воздействия, которое измеряет степень, в которой мышцы более (менее) воздействуют, чем ожидалось в сетевой нулевой модели (см. Материалы и методы). В результате этого расчета был получен показатель, который выражает влияние конкретной мышцы по сравнению с мышцами с идентичной степенью гиперребер в нулевой модели. Другими словами, этот показатель учитывает сложность конкретной мышцы (таблица 1).

Является ли эта математическая модель клинически актуальной? Отвечает ли тело по-разному на травмы мышц с более высокой оценкой удара, чем на мышцы с более низкой оценкой удара? Чтобы ответить на этот вопрос, мы оценили потенциальную взаимосвязь между воздействием на мышцы и временем восстановления после травмы.В частности, мы собрали данные о спортивных травмах и времени между первоначальной травмой и возвращением в спорт. Важно отметить, что мы наблюдали, что время восстановления сильно коррелировало с отклонениями оценки удара отдельной мышцы или группы мышц (F (1,12) = 37,3, R 2 = 0,757, p <0,0001; Рис. 3b), что позволяет предположить что наша математическая модель предлагает полезный клинический биомаркер реакции сети на повреждение. Мы отмечаем, что важно учитывать тот факт, что восстановление может быть медленнее у человека, которому требуются максимальные усилия в спортивном спорте, по сравнению с человеком, который стремится только функционировать в повседневной жизни.Поэтому, чтобы обобщить наши результаты на всю популяцию, мы также изучили данные о времени восстановления, полученные от не спортсменов, и представляем эти дополнительные результаты во вспомогательной информации (текст S6).

Наконец, чтобы интуитивно понять, как очаговая травма может вызывать отдаленные эффекты, потенциально замедляющие выздоровление, мы рассчитали влияние мышц голеностопного сустава и определили, какие другие мышцы были затронуты сильнее всего. То есть для каждой отдельной мышцы голеностопного сустава мы рассчитали воздействие на каждую из оставшихся 264 мышц, не относящихся к голеностопному суставу, а затем усреднили это значение по всем мышцам голеностопного сустава.Из 264 мышц, не связанных с голеностопным суставом, единственная мышца, на которую больше всего воздействует нарушение мышц голеностопного сустава, — это двуглавая мышца бедра, а второй по величине — латеральная широкая мышца колена. Кроме того, мышца бедра, на которую больше всего влияет нарушение, — это камбаловидная мышца.

Контроль опорно-двигательного аппарата человека

Какова взаимосвязь между функциональным воздействием мышцы на тело и нейронной архитектурой, которая влияет на контроль? Здесь мы исследуем отношения между опорно-двигательной системой и первичной моторной корой.Мы исследовали область карты коркового представления головного мозга, посвященную мышцам с низким или высоким воздействием, опираясь на анатомию моторной полосы, представленной в моторном гомункуле [43] (рис. 4a), грубое одномерное представление тела в головном мозге. [44]. Мы наблюдали, что области гомункула по-разному контролируют мышцы с положительной и отрицательной оценкой отклонения воздействия (таблица 2). Более того, мы обнаружили, что области гомункула, контролирующие только положительно (отрицательно) отклоняющиеся мышцы, как правило, располагаются медиально (латерально) на моторной полосе, что предполагает наличие топологической организации ожидаемого воздействия мышцы на нервную ткань.Чтобы исследовать эту закономерность более глубоко, для каждой области гомункула мы рассчитали коэффициент отклонения как процент мышц, которые положительно отклонились от ожидаемой оценки воздействия (т. Е. Значение 1 для бровей, глаз, лица и значение 0 для колена , бедро, плечо; см. Таблицу 2). Мы обнаружили, что коэффициент отклонения достоверно коррелировал с топологическим положением на моторной полосе (F (1,19) = 21,3, R 2 = 0,52, p <0,001; рис. 4b).

Рис. 4. Зондирование опорно-двигательного аппарата.

(а) Гомункул первичной моторной коры, построенный Пенфилдом. (b) Коэффициент отклонения значительно коррелирует с гомункулярной топологией (F (1,19) = 21,3, R 2 = 0,52, p <0,001), уменьшаясь от медиального (область 0) к латеральному (область 22). (c) Отклонение оценки воздействия значимо коррелирует с объемом активации моторной полосы (F (1,5) = 14,4, R 2 = 0,743, p = 0,012). Точки данных имеют размер в соответствии с количеством мышц, необходимых для конкретного движения.График пронумерован следующим образом, что соответствует таблице 5: большой палец (1), указательный палец (2), средний палец (3), кисть (4), все пальцы (5), запястье (6), локоть (7). (d) Корреляция между пространственным упорядочением категорий гомункулов Пенфилда и линейной мышечной координатой из многомерного масштабного анализа (F (1,268) = 316, R 2 = 0,54, p <0,0001). Данные доступны в DOI : 10.5281 / zenodo.1069104.

https://doi.org/10.1371/journal.pbio.2002811.g004

В качестве более строгого теста этой взаимосвязи между воздействием мышцы на сеть и нейронной архитектурой мы сопоставили данные о физических объемах функциональной активации на основе МРТ на моторной полосе, которые предназначены для отдельных движений (например, , сгибание пальцев или моргание глаз). Объемы активации определяются как вокселы, которые активируются (определяемые сигналом, зависящим от уровня кислорода в крови) во время движения [38,39]. Важно отметить, что мы обнаружили, что объем функциональной активации независимо предсказывает отклонение оценки удара мышц (рис. 4c, F (1,5) = 14.4, p = 0,012, R 2 = 0,743), что согласуется с интуицией, что мозг будет уделять больше места в сером веществе контролю над мышцами, которые более эффективны, чем ожидалось в нулевой модели. Опять же, отклонение от удара — это показатель, который учитывает степень гиперребер конкретной мышцы и относится к удару мышц с идентичной степенью гиперребер в нулевой модели. Таким образом, ударное отклонение измеряет топологию локальной сети, а не просто непосредственные соединения рассматриваемой мышцы.

В качестве финального теста этой взаимосвязи мы спросили, оптимально ли сопоставлена ​​стратегия нервного контроля, воплощенная в моторной полоске, с группами мышц. Мы построили мышечно-ориентированный график, соединив две мышцы, если они касаются одной и той же кости (рис. 1c, слева). Мы наблюдали наличие групп мышц, плотно связанных друг с другом, имеющих общие кости. Мы извлекли эти группы, используя метод кластеризации, разработанный для сетей [45,46], который обеспечивает разделение мышц на сообщества на основе данных (рис. 1b, справа).Чтобы сравнить структуру сообщества, присутствующую в мышечной сети, с архитектурой системы нейронного контроля, мы рассмотрели каждую из 22 категорий в моторном гомункуле [18] как отдельное нейронное сообщество и сравнили эти задания сообщества на основе мозга с заданиями сообщества. полученный из управляемого данными раздела мышечной сети. Используя коэффициент Рэнда [47], мы обнаружили, что распределение сообществ как для гомункула, так и для мышечной сети было статистически схожим (z Rand > 10), что указывает на соответствие между модульной организацией опорно-двигательного аппарата и структурой гомункула.Например, трицепс плеча и двуглавая мышца плеча принадлежат к одной гомункулярной категории, и мы обнаружили, что они также принадлежат к одному и тому же сообществу топологических мышечных сетей.

Затем, поскольку гомункул имеет линейную топологическую организацию, мы спросили, был ли порядок сообществ внутри гомункула (Таблица 3) подобен управляемому данными упорядочению групп мышц в теле, как определено с помощью MDS [48]. Из сети, ориентированной на мышцы (рис. 1b), мы получили матрицу расстояний, которая кодирует наименьшее количество костей, которые необходимо пройти, чтобы перейти от одной мышцы к другой.MDS этой матрицы расстояний выявил одномерные линейные координаты для каждой мышцы, так что топологически близкие мышцы были близко друг к другу, а топологически далекие мышцы были далеко друг от друга. Мы заметили, что линейная координата каждой мышцы значительно коррелирует с ее категорией гомункула (рис. 4d, F (1,268) = 316, p <0,0001, R 2 = 0,54), что указывает на эффективное сопоставление нейронных представлений мышцы. система и сетевая топология мышечной системы тела.

Наши результаты из Рис. 4d демонстрируют соответствие между топологией гомункула и управляемым данными упорядочением мышц, полученным с учетом топологических расстояний между ними. Этот результат можно интерпретировать одним из двух способов: одна разумная гипотеза состоит в том, что, поскольку большинство соединений в опорно-двигательной сети являются короткодействующими, открытие в основном обусловлено связями ближнего действия. Вторая разумная гипотеза состоит в том, что, хотя соединения ближнего действия являются наиболее распространенными, соединения дальнего действия образуют важные внутримодульные связи, которые помогают определять организацию сети.Чтобы выбрать между этими двумя гипотезами, мы рассмотрели два варианта нашего эксперимента MDS: один включает только соединения, длина которых меньше средней длины соединения, а другой — только соединения, длина которых превышает среднюю длину соединения. Мы обнаружили, что упорядочение на основе данных, полученное только из коротких и только длинных соединений, привело к значительным корреляциям с гомункулярной топологией (F (1,268) = 24,9, R 2 = 0,085, p <0,0001 и F (1,268). = 5, R 2 = 0.018, p = 0,026 соответственно). Примечательно, что включение как длинных, так и коротких соединений приводит к более сильной корреляции с гомункулярной топологией, чем рассмотрение любого из них независимо, что предполагает зависимость от соединений любой длины. В будущем было бы интересно проверить, в какой степени эта межсетевая карта изменяется у людей с двигательными нарушениями или изменениями после инсульта.

Обсуждение

Структура опорно-двигательного аппарата человека

Представляя сложную взаимосвязь опорно-двигательного аппарата в виде сети костей (представленных узлами) и мышц (представленных гиперребрами), мы получили ценную информацию об организации человеческого тела.Изучение анатомических сетей с использованием аналогичных методов становится все более распространенным в области эволюционной биологии и биологии развития [10]. Однако этот подход обычно применялся только к отдельным частям тела, включая руку [49], голову [11] и позвоночник [12], тем самым предлагая понимание того, как развивалась эта часть организма [50, 51]. Более того, даже после моделирования всей мускулатуры тела [13] и нервно-мышечно-скелетной системы [14] в более общем плане некоторые количественные утверждения могут остаться неуловимыми, в значительной степени из-за отсутствия математического языка, на котором можно было бы обсуждать сложность взаимосвязи. узоры.В этом исследовании мы предлагаем явное и экономное представление всей опорно-двигательной системы в виде графа узлов и ребер, и это представление позволило нам точно охарактеризовать сеть в целом.

При моделировании системы как сети важно начать последующее исследование с характеристики нескольких ключевых архитектурных свойств. Одним из наиболее фундаментальных показателей структуры сети является ее распределение по степеням [52], которое описывает неоднородность подключения узла к его соседям таким образом, который может дать представление о том, как формировалась система [7].Мы заметили, что степень распределения опорно-двигательного аппарата значительно отличается от ожидаемого в нулевом графе (рис. 2e), показывая меньше узлов высокой степени и переизбыток узлов низкой степени. Несоответствие между графами реальной и нулевой модели согласуется с тем фактом, что опорно-двигательная система человека развивается в контексте физических и функциональных ограничений, которые вместе определяют ее явно неслучайную архитектуру [53]. Распределение степеней этой сети показывает пик примерно на второй степени, за которым следует относительно тяжелый хвост узлов высокой степени.Последняя особенность обычно наблюдается во многих типах реальных сетей [54], чьи концентраторы могут быть дорогостоящими в разработке, обслуживании и использовании [55,56], но играют критическую роль в устойчивости системы, обеспечивая быстрое реагирование [55], буферизация изменчивости окружающей среды [57] и содействие выживанию и воспроизводству [58]. Первая особенность — пик распределения — согласуется с интуицией, что большинство мышц опорно-двигательного аппарата соединяются только с двумя костями, главным образом для функции простого сгибания или разгибания в суставе.Напротив, есть только несколько мышц, которые требуют высокой степени для поддержки очень сложных движений, таких как поддержание выравнивания и угла позвоночника за счет одновременного управления движением многих костей. Эти ожидаемые результаты обеспечивают важную проверку модели, а также предлагают полезную визуализацию опорно-двигательного аппарата.

Скелетно-мышечная сеть характеризуется особенно интересным свойством, которое отличает ее от нескольких других реальных сетей: тем фактом, что она встроена в трехмерное пространство [59].Это свойство не наблюдается в семантических сетях [60] или World Wide Web [61], которые кодируют отношения между словами, концепциями или документами в некоторой абстрактной (и, скорее всего, неевклидовой) геометрии. Напротив, опорно-двигательная система представляет собой объем с узлами, имеющими определенные координаты, и краями, представляющими физически протяженные ткани. Чтобы лучше понять физическую природу скелетно-мышечной сети, мы исследовали анатомическое расположение мышц с разной степенью (рис. 2c).Мы заметили, что мышечные центры расположены преимущественно в торсе, обеспечивая плотную структурную взаимосвязь, которая может стабилизировать ядро ​​тела и предотвратить травмы [62]. В частности, мышцы высокой степени группируются вокруг средней линии тела, рядом с позвоночником, вокруг таза и плечевого пояса, что согласуется с представлением о том, что для маневренности и устойчивости этих областей требуется совокупность мышц с различной геометрией и свойствами тканей [63 ]. Действительно, мышцы в этих местах должны поддерживать не только сгибание и разгибание, но также отведение, приведение и внутреннее и внешнее вращение.

Важно отметить, что в костно-мышечной системе у разных людей существуют значительные различия, и не все анатомические атласы согласуются с наиболее репрезентативным набором точек вставки и происхождения. Представленные здесь результаты отражают то, как опорно-двигательная система была представлена ​​в тексте, из которого она была построена [19], и, следовательно, обеспечивают только одно возможное сетевое представление опорно-двигательной системы. Чтобы оценить надежность наших результатов при разумных вариациях конфигурации опорно-двигательного аппарата, мы создали вторую опорно-двигательную сеть из альтернативного атласа [64].Используя этот второй атлас, мы наблюдали последовательные результаты и сообщаем об этом дополнительном анализе в S3 Text.

Также важно отметить, что мы сопоставили первый атлас [19] в скелетно-мышечный граф, состоящий как из костных, так и из некостных узлов. Этот выбор уравнивает структурные роли костей и определенных сухожилий и связок, что, по общему признанию, является упрощением биологии. Одним из оправданий этого упрощения является то, что некостные структуры часто служат важными точками прикрепления мышц (т.э., подошвенная фасция стопы). Таким образом, разумно разделить опорно-двигательную сеть на две категории мышц и структур, которые служат точками прикрепления мышц, как мы это сделали здесь. Тем не менее, эта вторая категория довольно разнородна по составу, и в будущей работе можно было бы также рассмотреть возможность построения многослойного графа с отдельным слоем, учитывающим каждый тип структуры мышечного прикрепления. Чтобы подтвердить, что наши результаты и интерпретации существенно не меняются из-за наличия некостных мышечных точек прикрепления, мы удалили такие точки в альтернативном атласе и отметили, что наши основные результаты все еще остаются в силе (см. Текст S3).

Функция опорно-двигательного аппарата человека

Чтобы лучше понять функциональную роль отдельной мышцы во взаимосвязанной опорно-двигательной системе, мы реализовали основанную на физике модель свойств импульсного отклика сети, кодируя кости как точечные массы и мышцы как пружины [65]. Примечательно, что эта очень упрощенная модель опорно-двигательного аппарата способна идентифицировать важные функциональные особенности. Хотя мышцы высокой степени также имели тенденцию иметь большое влияние на реакцию сети (рис. 3а), было несколько заметных отклонений от этой тенденции (таблица 1).

Мышца, оказывающая наименьшее воздействие по сравнению с ожидаемой, — это orbicularis oculi, мышца, используемая для управления движением века. Эта мышца небольшая и относительно изолированная в теле, берут начало и прикрепляются к костям черепа. Мышцы лица в целом образуют плотное и изолированное сообщество, с немногими связями, выходящими за пределы этого сообщества. Эти факторы, вероятно, способствуют слабому воздействию этой мышцы, и аналогичный аргумент может быть сделан в отношении оставшихся двух мышц с меньшим воздействием, чем ожидалось, которые также являются мышцами лица.

Мышцы с большей нагрузкой, чем ожидалось, более многочисленны, но почти полностью расположены в верхней конечности или поясе верхней конечности. Длинный лучевой разгибатель запястья, anconeus, brachioradialis и brachialis мышцы являются собственными мышцами руки, последние три действуют в локтевом суставе. Все эти мышцы могут иметь более сильное воздействие, чем ожидалось в нулевой модели, потому что они могут прямо или косвенно влиять на движение многих костей запястья и кисти. Наблюдаемое сильное воздействие этих мышц может быть результатом того факта, что они контролируют движение конечности, а на конце конечности находится множество костей, движение которых напрямую зависит от этих мышц.Остальные ударные мышцы, за исключением грушевидной мышцы, прикрепляют верхнюю конечность к осевому скелету. Этими мышцами являются коракобрахиальная, подостная, надостная, подлопаточная, малая круглая, большая круглая и большая грудная мышцы. Эти мышцы, как и предыдущие четыре, обладают тем свойством, что они контролируют движение всей конечности, что, вероятно, способствует их влиянию. В отличие от предыдущей группы, эти мышцы также соединяются с осевым скелетом, что также может усиливать их воздействие.Многие из этих мышц берут свое начало на костях плечевого пояса и могут влиять на все другие мышцы плечевого пояса и, возможно, на все кости, связанные с этими мышцами. Такая же динамика, вероятно, существует в нижней конечности, что отражается наличием грушевидной мышцы тазового пояса. Подробное обсуждение того, как структура локальной сети и конфигурация мышц могут взаимодействовать с отклонением от удара, представлено в S7 Text. В дополнение к нашей работе, представленной во вспомогательной информации, дальнейшее понимание свойств этих выбросов может быть получено путем проведения экспериментов по тщательному изучению костей, на которые сильнее всего воздействует каждая из этих мышц.

Хотя сетевое представление системы может дать базовую физическую интуицию благодаря своей скупости и простоте, оно также остается безразличным ко многим деталям архитектуры и функций системы. Извечный вопрос, могут ли эти базовые модели сложных систем обеспечить точные прогнозы реальных результатов. Мы рассмотрели этот вопрос, изучив взаимосвязь между оценкой удара мышцы и количеством времени, которое требуется человеку для восстановления после травмы.Мы количественно оценили время восстановления, суммируя (i) время восстановления после первичной инвалидности, вызванной первоначальным мышечным повреждением, и (ii) время восстановления после любых вторичных нарушений, вызванных изменением использования других мышц в сети из-за первоначального травма мышц [66]. Мы обнаружили, что отклонение от ожидаемой оценки воздействия в нулевой сети значительно коррелировало со временем выздоровления (рис. 3b), подтверждая мнение о том, что очаговая травма может оказывать длительное воздействие на организм из-за изначально взаимосвязанной природы опорно-двигательного аппарата.

Действительно, известно, что мышечные изменения в одной части тела влияют на другие группы мышц. Например, укрепление мышц бедра может привести к улучшению функции колена после замены коленного сустава [67]. Изменение мышечной функции в голеностопном суставе после растяжения связок может вызвать изменение функции мышц бедра [68,69], результат, воспроизведенный нашей моделью (которая показала, что двуглавая мышца бедра и латеральная широкая мышца бедра больше всего пострадали от травмы лодыжки), а повреждение мышц конечностей может приводят к вторичному повреждению диафрагмы [70].Наша модель предлагает математически принципиальный способ предсказать, какие мышцы с большей вероятностью будут иметь такое вторичное влияние на более крупную опорно-двигательную систему, а какие мышцы подвержены риску вторичного повреждения, учитывая первичное повреждение в определенном участке мышцы. В будущем было бы интересно проверить, могут ли эти прогнозы повлиять на полезные корректировки клинических вмешательств, явно принимая во внимание риск вторичного повреждения определенных мышц. Ранее профилактика вторичных мышечных травм в основном сводилась к криотерапии [71,72] и еще не была мотивирована такой механистической моделью.Наконец, важный вопрос, который следует задать, заключается в том, насколько эта конфигурация опорно-двигательного аппарата является эволюционной выгодной и как эволюционное давление могло оптимизировать воздействие на мышцы. Интуитивно можно было ожидать, что эволюционное давление снижает мышечную нагрузку, возможно, за счет увеличения мышечной избыточности. Тщательное исследование эволюционных преимуществ топологии костно-мышечной сети было бы интересной темой для будущей работы.

Контроль опорно-двигательного аппарата человека

Учитывая сложность костно-мышечной сети и ее критическую роль в выживании человека, естественно задать вопросы о том, как эта сеть управляется человеческим мозгом.Действительно, изучение моторного контроля имеет долгую и яркую историю [73], которая дала важную информацию о том, как мозг может успешно и точно совершать произвольные движения, несмотря на такие проблемы, как избыточность, шум [74], задержки сенсорной обратной связи. [75], неопределенность окружающей среды [76], нервно-мышечная нелинейность [77] и нестационарность [78]. Здесь мы использовали отличный, но дополняющий друг друга подход и спросили, как топология опорно-двигательного аппарата может быть отображена на топологии моторной полосы в коре головного мозга.Мы начали с того, что отметили, что ударное отклонение мышцы положительно коррелирует с размером коркового объема, предназначенного для его контроля (рис. 4c). Одна из интерпретаций этой взаимосвязи состоит в том, что те мышцы, которые своими непосредственными связями оказывают большее влияние, чем ожидалось в нулевой модели, имеют тенденцию контролировать более сложные движения и, следовательно, требуют большего количества нейронов для управления этими движениями [79]. Вторая интерпретация основана на эволюционном аргументе о том, что мышцы с большей нагрузкой нуждаются в большей избыточности в их системах управления [80], и эта избыточность принимает форму большей корковой области.

Помимо локальных объемов коры [81], можно также захотеть понять, в какой степени крупномасштабная организация скелетно-мышечной сети отражает организацию контролирующей ее моторной полосы. Основываясь на недавнем применении методов выявления сообществ к изучению анатомии черепа [11,82,83], мы сообщили о модульной организации мышечной сети: группы мышц, в которых мышцы одной группы с большей вероятностью соединяются с одной. кроме мышц в других группах.Что еще более интересно, мы заметили, что сообщества мышц очень похожи на известную группу мышц моторной полосы (рис. 1b, справа): мышцы, которые имеют тенденцию соединяться с теми же костями, что и друг друга, также имеют тенденцию контролироваться той же частью моторной полосы. . Более того, естественное линейное упорядочение мышечных сообществ — такое, что сообщества располагаются близко друг к другу на линии, если они имеют общие сетевые соединения — имитирует порядок контроля в моторной полосе (Рис. 4d). Эти результаты дополняют важную предыдущую работу, предполагающую, что одномерная организация моторной полосы связана как со структурной, так и со функциональной организацией скелетно-мышечной сети [84,85].Фактически, результаты более конкретно предлагают определение оптимального сетевого управления на уровне сети: согласованность линейной карты от сообществ опорно-двигательного аппарата до сообществ моторных полос.

Наконец, мы исследовали физические места коркового контроля пораженных мышц. Мы заметили, что мышцы с большим воздействием, чем ожидалось, при нулевом графике, как правило, контролируются средними точками на моторной полосе, в то время как мышцы с меньшим воздействием, чем ожидалось, обычно контролируются боковыми точками на моторной полосе (рис. 4b).Эта пространственная специфика указывает на то, что организация моторной полосы ограничивается физическим расположением тела, а также аспектами функционирования мышц. Предыдущие исследования изучали общее временное соответствие между корковой активностью и мышечной активностью во время движения [86], но мало что известно о топологическом соответствии.

Методологические соображения

Построение гиперграфа на основе опорно-двигательного аппарата человека требует допущений и упрощений, влияющих на гибкость текущей модели.Наиболее заметным является разделение системы на две категории: мышцы и кости. Эти категории не содержат дополнительной информации и, следовательно, не учитывают особенности внутренней архитектуры мышцы или кости. Это упрощение вводит несколько ограничений для пертурбативной модели, включая возможность моделирования функциональной архитектуры сложных мышц или мышц, обладающих способностью независимо сокращать подмножество волокон. Например, двуглавая двуглавая мышца плеча берет начало как на лопатке, так и на супрагленоидном бугорке, и можно сокращать волокна одной головки отдельно от волокон другой головки.Дальнейшая работа может расширить нашу структуру моделирования, чтобы представить эту сложную функциональную архитектуру. Более того, немышечные структуры мягких тканей, важные для опорно-двигательного аппарата, не могут быть четко учтены. Эти структуры, включая сухожилия и связки, могут быть либо (1) закодированы как кости, как в основной текстовой сети, либо (2) исключены из сети, как в приложении; ни один из вариантов не является полностью анатомически точным.

В случае костей модель не может учесть взаимодействия кость-кость (суставы).Большинство мышц действуют на суставы, и исключение суставов затемняет специфическую функцию мышц. То есть модель учитывает тот факт, что мышцы перемещают кости, но не то, как они движутся или в каком направлении. В пертурбативном моделировании отсутствие ограничений на суставы позволяет размещать кости под неестественными углами относительно соседних костей. Кроме того, кости моделируются как точечные массы, которые в пертурбативном моделировании могут позволить костям проходить траектории, связанные с прохождением через пространство, которое на самом деле занято другой костью.Дальнейшая работа может расширить нашу структуру моделирования, чтобы учесть эти дополнительные биофизические ограничения.

Выводы, полученные с помощью этой модели, являются результатом входных данных. Поскольку индивидуальные вариации существуют в опорно-двигательном аппарате, они также существуют и в мышечных воздействиях. Мы попытались использовать два набора входных данных, чтобы оправдать наши основные выводы, но эти результаты не могут быть обобщены на все здоровые конфигурации опорно-двигательного аппарата. В частности, степень мышц, подверженная индивидуальным изменениям, может повлиять на воздействие этой мышцы.Каким образом нормативные индивидуальные вариации в степени мышечной массы связаны с вариациями прогнозируемого воздействия на мышцы, является важным вопросом, который, тем не менее, выходит за рамки настоящего исследования.

Наконец, опорно-двигательный аппарат человека представляет собой сложную и плотно взаимосвязанную сеть. Ни мышцы, ни кости не функционируют как независимые образования. Таким образом, трудно отделить функцию отдельной мышцы от воздействия окружающих мышц. Независимость мускулов может быть частично устранена соответствующим выбором нулевой модели, и наши результаты остаются в силе при множестве вариантов.Тем не менее, при интерпретации этих результатов следует учитывать представление о том, что мышцы — и факторы воздействия — не являются действительно независимыми.

Заключение

Таким образом, здесь мы разработали новое сетевое представление опорно-двигательного аппарата, построили структуру математического моделирования для прогнозирования восстановления и подтвердили этот прогноз на данных, полученных при спортивных травмах. Более того, мы напрямую связали сетевую структуру опорно-двигательного аппарата с организацией корковой архитектуры, предполагая эволюционное давление для оптимального сетевого контроля над телом.Мы сравнили структуру, функцию и контроль опорно-двигательного аппарата человека с нулевой системой, в которой небольшие группы тесно связанных мышц переплетаются друг с другом. Наши результаты предполагают, что структура, функции и контроль опорно-двигательного аппарата возникают из очень детализированной мелкомасштабной организации, а когда эта мелкая организация разрушается, появляются новые черты. Наша работа напрямую мотивирует будущие исследования, чтобы проверить, можно ли достичь более быстрого восстановления, не только сосредоточив реабилитацию на первичной травме, но и направив усилия на мышцы, на которые воздействует основная мышца.Кроме того, наша работа поддерживает разработку прогностической структуры для определения степени скелетно-мышечных последствий поражения первичной моторной коры головного мозга. Наши результаты являются важным шагом в сетевой науке в клинической медицине [87]. Наши результаты позволяют уменьшить вторичные травмы и ускорить выздоровление.

Вспомогательная информация

S1 Таблица. Мышцы с большей или меньшей нагрузкой, чем ожидалось в случайно перестроенных гиперграфах.

Эта нулевая модель потребовала случайной перестройки мускулов внутри гиперграфа с сохранением степени.Мышцы на левой стороне оказывают меньшее воздействие, чем ожидалось, учитывая степень их гиперреберности: их воздействие более чем на 1,96 стандартного отклонения ниже среднего, что указывает на то, что они лежат за пределами 95% доверительного интервала распределения. Мышцы с правой стороны оказывают большее воздействие, чем ожидалось, учитывая степень их гипреберья: их воздействие более чем на 1,96 стандартного отклонения превышает среднее значение, в порядке от наибольшего к наименьшему. В этой таблице показаны мышцы, которые имели наибольшую положительную и наибольшую отрицательную разницу в воздействии, по сравнению с контрольными группами подобранной степени.

https://doi.org/10.1371/journal.pbio.2002811.s008

(XLSX)

S2 Стол. Категории гомункулов, мышцы-члены которых либо все оказывают большее влияние, чем ожидалось, либо все оказывают меньшее влияние, чем ожидалось, по сравнению со случайно перестроенными гиперграфами.

Эта нулевая модель потребовала случайной перестройки мускулов внутри гиперграфа с сохранением степени. Категории слева полностью состоят из мышц с меньшим воздействием, чем ожидалось, по сравнению с контрольными группами с подобранной степенью.Категории справа полностью состоят из мышц, оказывающих большее воздействие, чем ожидалось, по сравнению с контрольными группами с подобранной степенью.

https://doi.org/10.1371/journal.pbio.2002811.s009

(XLSX)

S3 Таблица. Мышцы с большей или меньшей нагрузкой, чем ожидалось в гиперграфах, случайным образом перестраивались в рамках своей категории гомункулов.

Эта нулевая модель потребовала случайной перестройки мускулов в пределах их категории гомункулов с сохранением степени. Мышцы на левой стороне оказывают меньшее воздействие, чем ожидалось, учитывая степень их гиперреберности: их воздействие больше единицы.96 стандартных отклонений ниже среднего, что указывает на то, что они лежат за пределами 95% доверительного интервала распределения. Мышцы с правой стороны оказывают большее воздействие, чем ожидалось, учитывая степень их гипреберья: их воздействие более чем на 1,96 стандартного отклонения превышает среднее значение, в порядке от наибольшего к наименьшему. В этой таблице показаны мышцы, которые имели наибольшую положительную и наибольшую отрицательную разницу в воздействии, по сравнению с контрольными группами подобранной степени.

https://doi.org/10.1371/journal.pbio.2002811.s010

(XLSX)

S4 Таблица. Категории гомункулов, мышцы-члены которых либо все оказывают большее влияние, чем ожидалось, либо все оказывают меньшее влияние, чем ожидалось, по сравнению с гиперграфами, случайно перепрограммированными в рамках их категории гомункулов.

Эта нулевая модель потребовала случайной перестройки мускулов в пределах их категории гомункулов с сохранением степени. Категории слева полностью состоят из мышц с меньшим воздействием, чем ожидалось, по сравнению с контрольными группами с подобранной степенью. Категории справа полностью состоят из мышц, оказывающих большее воздействие, чем ожидалось, по сравнению с контрольными группами с подобранной степенью.

https://doi.org/10.1371/journal.pbio.2002811.s011

(XLSX)

S5 Таблица. Мышцы с большей или меньшей нагрузкой, чем ожидалось в случайном гиперграфе.

Эта нулевая модель требовала случайного присвоения мышечно-костных связей, сохраняя только общую степень, а не индивидуальную степень мышц. Мышцы на левой стороне оказывают меньшее воздействие, чем ожидалось, учитывая степень их гиперреберности: их воздействие более чем на 1,96 стандартного отклонения ниже среднего, что указывает на то, что они лежат за пределами 95% доверительного интервала распределения.Мышцы на правой стороне оказывают большее воздействие, чем ожидалось, учитывая степень их гиперреберности: их воздействие более чем на 1,96 стандартного отклонения превышает среднее значение и упорядочено от наибольшего к наименьшему.

https://doi.org/10.1371/journal.pbio.2002811.s012

(XLSX)

S1 Рис. Обнаружение сообщества с разными параметрами разрешения.

На этом рисунке показано, как выбор параметра разрешения во время обнаружения сообществ изменит количество и размер обнаруженных сообществ.С увеличением параметра разрешения размер отдельных сообществ уменьшается, а количество сообществ увеличивается. (a-d) Обнаружение сообщества для сети, ориентированной на мышцы, с использованием значений γ, равных 1, 2, 8 и 16 соответственно. Окончательная структура сообщества для каждого γ представляет собой согласованное разделение 100 отдельных прогонов алгоритма обнаружения сообщества.

https://doi.org/10.1371/journal.pbio.2002811.s018

(EPS)

S2 Рис. Обнаружение сообщества с разными параметрами разрешения.

Этот рисунок иллюстрирует стабильность при выбранном параметре настройки γ = 4.3. Здесь мы исследуем разбиения, созданные из близких параметров разрешения γ = 4,2 и γ = 4,4. Визуально кажется, что все три раздела имеют похожую структуру. Два соседних раздела также математически схожи с z-значением коэффициента Рэнда [47] z Rand (γ = 4,2, γ = 4,3) = 105, z Rand (γ = 4,3, γ = 4,4) = 110 и z Rand (γ = 4,2, γ = 4,4) = 105. Окончательная структура сообщества для каждого γ представляет собой согласованное разделение 100 отдельных прогонов алгоритма обнаружения сообщества.

https://doi.org/10.1371/journal.pbio.2002811.s019

(EPS)

S3 Рис. Визуальное сравнение нулевых моделей.

Этот рисунок иллюстрирует различия в нулевых двудольных графах. (A) Исходный непереставленный двудольный граф мышца-кость. (B) Случайный нулевой двудольный граф. (C) Случайно перестроенный двудольный граф. (D) Двудольный граф, случайно измененный внутри сообщества, используемый в основном тексте, который переставляет топологию локально, сохраняя при этом глобальную топологию.

https://doi.org/10.1371/journal.pbio.2002811.s020

(EPS)

S4 Рис. Основные результаты в зависимости от нулевой модели.

Здесь мы показываем результаты с использованием модели случайного гиперграфа или модели перестроенного (переставленного) гиперграфа, которая не поддерживает локальные связи. (A) Оценка удара, построенная как функция степени гиперребра для случайных гиперграфов и наблюдаемого гиперграфа опорно-двигательного аппарата. (B) Оценка удара, нанесенная на график как функция степени гиперребра для переставленных гиперграфов и наблюдаемого гиперграфа опорно-двигательного аппарата.(C) Коэффициент отклонения достоверно коррелирует с гомункулярной категорией (F (1,19) = 6,67, p = 0,018, R 2 = 0,26), уменьшаясь от медиального (область 0) к латеральному (область 22) с использованием случайного нулевая модель гиперграфа. (D) Коэффициент отклонения достоверно коррелирует с гомункулярной категорией (F (1,19) = 6,86, p = 0,017, R 2 = 0,26), уменьшаясь от медиального (область 0) к латеральному (область 22) с использованием пермутированного нулевая модель гиперграфа. (E) Отклонение оценки воздействия значительно коррелирует с площадью активации моторной полосы (F (1,5) = 13.4, p = 0,014, R 2 = 0,72) с использованием случайной нулевой модели гиперграфа. Точки данных имеют размер в соответствии с количеством мышц, необходимых для конкретного движения. (F) Отклонение оценки воздействия значительно коррелирует с площадью активации моторной полосы (F (1,5) = 13,7, p = 0,022, R 2 = 0,73) с использованием пермутированной нулевой модели гиперграфа. Точки данных имеют размер в соответствии с количеством мышц, необходимых для конкретного движения. (G) Отклонение оценки воздействия коррелирует со временем восстановления мышц после травмы мышц или групп мышц (F (1,11) = 64.5, p = 6,3 × 10 −6 , R 2 = 0,85), используя случайную нулевую модель гиперграфа. Точки данных масштабируются в соответствии с количеством задействованных мышц. (H) Отклонение оценки воздействия коррелирует со временем восстановления мышц после травмы мышц или групп мышц (F (1,11) = 70,5, p <0,0001, R 2 = 0,86), что больше, чем ожидалось при перестановке — основанная на нулевой модели гиперграфа. Точки данных масштабируются в соответствии с количеством задействованных мышц. Данные доступны в DOI: 10.5281 / zenodo.1069104.

https://doi.org/10.1371/journal.pbio.2002811.s021

(EPS)

S6 Рис. Исследование функции опорно-двигательного аппарата для альтернативной сети.

(a) Оценка удара, построенная как функция степени гиперребра для модели нулевого гиперграфа и наблюдаемого гиперграфа опорно-двигательного аппарата. (b) Отклонение оценки воздействия коррелирует со временем восстановления мышц после травмы мышц или групп мышц (F (1,12) = 40,2, p <0,0001, R 2 = 0.77). Заштрихованные области указывают 95% доверительных интервалов, а точки данных масштабируются в соответствии с количеством задействованных мышц. Данные доступны в DOI: 10.5281 / zenodo.1069104.

https://doi.org/10.1371/journal.pbio.2002811.s023

(PNG)

S7 Рис. Зондирование опорно-двигательного аппарата для альтернативной сети.

(a) Коэффициент отклонения достоверно коррелирует с гомункулярной топологией (F (1,18) = 8,88, R 2 = 0,33, p = 0,0080), уменьшаясь от медиального (область 0) к латеральному (область 22) регионы.(b) Отклонение оценки воздействия значимо коррелирует с площадью активации моторной полосы (F (1,5) = 23,4, R 2 = 0,82, p = 0,005). Точки данных имеют размер в соответствии с количеством мышц, необходимых для конкретного движения. Данные доступны в DOI: 10.5281 / zenodo.1069104.

https://doi.org/10.1371/journal.pbio.2002811.s024

(PNG)

S9 Рис. Сравнение моделей с утяжелением костей и силой мышц и без них.

Воздействие мышц ног рассчитывалось с добавлением и без добавления анатомических значений массы кости и объема мышц.Было обнаружено, что эти воздействия значительно коррелировали друг с другом (F (1,25) = 6,83, R 2 = 0,0214, p = 0,015), что позволяет предположить, что по крайней мере в некоторых частях тела наше упрощенное сетевое представление обеспечивает разумное приближение для более биофизически точных сетевых представлений. Данные доступны в DOI: 10.5281 / zenodo.1069104.

https://doi.org/10.1371/journal.pbio.2002811.s026

(PNG)

S11 Рис. Соответствие топологии сети и функции системы.

Топология сети, а именно средняя длина кратчайшего пути, значительно отрицательно коррелирует с оценкой воздействия, оцененной на основе пертурбативного моделирования динамики системы (F (1,268) = 65,1, R 2 = -0,4422, p <0,0001). Данные доступны в DOI: 10.5281 / zenodo.1069104.

https://doi.org/10.1371/journal.pbio.2002811.s028

(PNG)

S12 Рис. Взаимосвязь между опорно-двигательным аппаратом и мышечным воздействием на две скелетно-мышечные сети.

Здесь мы сравниваем процентное изменение оценки и степени воздействия для каждой мышцы между опорно-двигательной сетью, указанной в основном тексте, и сообщенной в дополнительном тексте. Мы наблюдаем, что на оценку удара мышц больше влияют большие изменения степени, чем меньшие изменения степени (F (1,268) = 5,76, R = 0,1450, p = 0,017). Данные доступны в DOI: 10.5281 / zenodo.1069104.

https://doi.org/10.1371/journal.pbio.2002811.s029

(PNG)

S13 Фиг.Альтернативный пертурбативный подход.

Чтобы установить меру воздействия на гиперреберь мышцы, объекты были перемещены в четвертое пространственное измерение, чтобы избежать произвольного выбора в трех измерениях. Альтернативный подход состоял бы в том, чтобы возмущать каждую мышцу в каждом из трех ортогональных направлений, каждый раз вычисляя воздействие и вычисляя векторную сумму этих трех результатов. Чтобы ответить на вопрос о том, как эти два подхода сравниваются, мы провели этот эксперимент на двудольной матрице мышцы-кости, чтобы создать два вектора 270 × 1, один из которых кодировал оценки воздействия посредством смещения в четвертом измерении, а другой — векторную сумму три ортогональных смещения.Два вектора достоверно коррелировали друг с другом (F (1,268) = 1590, R 2 = 0,856, p <0,0001).

https://doi.org/10.1371/journal.pbio.2002811.s030

(PNG)

BBC Science & Nature — Человеческое тело и разум

Скелетная мышца: вызывает движение, поддерживает осанку, стабилизирует суставы и генерирует тепло

Гладкая мышца: встречается в стенках полых органов

Сердечная мышца: существует только в вашем сердце

Три типа of muscle

В вашем теле около 650 мышц, и они составляют примерно половину вашего веса.Эти мышцы можно разделить на три группы: скелетные, гладкие и сердечные. Все эти мышцы могут растягиваться и сокращаться, но они выполняют очень разные функции.

Скелетная мышца

Ткань, которую обычно называют мышцей, — это скелетная мышца. Скелетные мышцы покрывают ваш скелет, придавая ему форму. Они прикреплены к вашему скелету прочными упругими сухожилиями или напрямую связаны с грубыми участками кости. Скелетные мышцы находятся под произвольным контролем, что означает, что вы сознательно контролируете то, что они делают.

Практически все движения тела, от ходьбы до кивания головой, вызываются сокращением скелетных мышц. Ваши скелетные мышцы функционируют почти непрерывно, чтобы поддерживать вашу осанку, делая одну крошечную корректировку за другой, чтобы ваше тело оставалось в вертикальном положении. Скелетные мышцы также важны для удержания ваших костей в правильном положении и предотвращения смещения суставов. Некоторые скелетные мышцы лица прикрепляются непосредственно к коже. Малейшее сокращение одной из этих мышц меняет выражение вашего лица.

Скелетные мышцы выделяют тепло как побочный продукт мышечной деятельности. Это тепло жизненно важно для поддержания нормальной температуры тела.

Гладкая мышца

Гладкая мышца находится в стенках полых органов, таких как кишечник и желудок. Они работают автоматически, без вашего ведома. Гладкие мышцы участвуют во многих «хозяйственных» функциях тела. Мышечные стенки кишечника сокращаются, чтобы пропустить пищу по телу. Мышцы стенки мочевого пузыря сокращаются, чтобы вывести мочу из организма.Гладкие мышцы матки (или матки) женщины помогают выталкивать ребенка из тела во время родов. Мышца зрачкового сфинктера в глазу — это гладкая мышца, которая сужает размер вашего зрачка.

Сердечная мышца

Ваше сердце состоит из сердечной мышцы. Этот тип мышц существует только в вашем сердце. В отличие от других типов мышц сердечная мышца никогда не устает. Он работает автоматически и постоянно, без пауз. Сердечная мышца сокращается, чтобы выжать кровь из сердца, и расслабляется, чтобы сердце наполнилось кровью.

Вернуться к началу


Факт или вымысел ?: Язык — самая сильная мышца в теле

Он может сгибаться, скручиваться, сосать, может чашечек. Язык — важная, часто игровая часть анатомии человека. Многие из нас выросли с верой в утверждение, что язык — самая сильная мышца тела. Но так ли это на самом деле?

Краткий ответ: нет. Но объяснение не так однозначно, как вы думаете. Мы спросили нескольких знатоков языка (да, они существуют), почему миф так легко проглотить.

Морин Стоун из школы стоматологии Университета Мэриленда предполагает, что миф о силе языка возник благодаря его удивительной выносливости даже в таких точных задачах, как еда и речь. «Когда в последний раз утомлялся твой язык?» она спрашивает. «Если у вас нет никаких расстройств, ответ, вероятно, никогда». Стоун говорит, что упорство языка проистекает из того, как он построен — с множеством похожих кусочков мускулов, каждый из которых может выполнять одну и ту же задачу. «Это не утомляет, — говорит она, — потому что в архитектуре мышц много избыточности.Вы просто активируете разные мышечные волокна и получаете тот же результат ».

Стивен Таско, логопед из Университета Западного Мичигана, говорит, что вопрос о том, является ли язык самой сильной мышцей тела, сам по себе дезинформирует. Мягкая плоть, которую мы называем языком, — это не просто одна мышца, это совокупность восьми отдельных мышц. В отличие от других мышц, таких как бицепс, мышцы языка не развиваются вокруг опорной кости. Скорее, они переплетаются, образуя гибкую матрицу, образуя так называемый мышечный гидростат; эта структура похожа на щупальца осьминога или хобот слона.

Четыре мышцы в матрице, называемые внешними мышцами, прикрепляют язык к структурам в голове и шее. Одна мышца держится за основание черепа, другая соединяется с костью в горле, есть мышца, которая цепляется за нижнюю челюсть, а другая оборачивается вокруг неба. Они перемещают язычок из стороны в сторону, спереди назад, вверх и вниз.

Остальные мышцы составляют тело языка. Именно они дают ему возможность превращаться в бесконечные множества форм и поз.Они позволяют ему удлиняться, укорачиваться, скручиваться, сплющиваться и округляться, а также придают форму, которая помогает говорить, есть и глотать.


Поскольку язык состоит из мышц, а не костей, он очень гибкий, может похвастаться огромным диапазоном движений и формы, сохраняя при этом свой объем. «Это похоже на воздушный шар с водой», — говорит Таско. «Если вы деформируете его в одном месте, он выскочит в других местах». Таско считает, что миф об исключительной силе сохранился благодаря неутомимой гибкости языка.«Мы все знаем, что вы можете выполнять все виды гимнастики своим языком, — говорит он, — потому что кажется, что он всегда движется, и он очень подвижен». Он добавляет: «Я думаю, что это может быть истолковано как имеющее отношение к силе».

Воткнув мягкую наполненную воздухом лампочку в рот испытуемого, ученые могут измерить максимальное давление, которое язык может оказать на объект. Это устройство, называемое оральным инструментом штата Айова, кладут на язык, и испытуемых просят прижать его к небу как можно сильнее.Ученые также используют эту лампочку для измерения выносливости или того, как долго язык может удерживать определенную позу. Такие измерения опровергли миф, потому что на самом деле вы измеряете не мышцы, а мышечные системы. Но какова же тогда самая сильная мышечная система в теле? Ответ оказывается сложным и зависит от того, как определяется мышечная сила, но в любом случае язык не побеждает ни по каким критериям.

Есть много способов измерить силу. Один из них — грубая сила, и в этом случае самый большой — лучший.Все скелетные мышцы представляют собой пучки множества отдельных волокон, которые содержат небольшие структуры, генерирующие силу, называемые саркомерами. «Вообще говоря, большее количество мышечной ткани означает большее общее количество саркомеров, что означает большее создание максимальной силы», — говорит Таско. Это означает, что наибольшую силу создают самые большие мышцы — четырехглавые мышцы передней поверхности бедер и большая ягодичная мышца задней части.

Однако размер мышц и грубая сила — это еще не все. Мышцы работают, натягивая кости, которые действуют как рычаги, преобразующие мышечные сокращения (небольшие, но мощные движения) в большие движения — подумайте: сгибание гантелей.Ваш бицепс тянет за кости предплечья, чтобы поднять гантель. Поскольку ваше предплечье длинное, и бицепс тянет его прямо возле локтя, говорит Халил Искарус, лингвист из Университета Южной Калифорнии, бицепс должен тянуть с большой силой, чтобы поднять руку к плечу. А вот ваша челюсть — гораздо более короткий рычаг. Из-за этого жевательная мышца, основная мышца челюсти, также претендует на звание самой сильной мышцы тела.

Или, может быть, дело вовсе не в силе, а, скорее, в общей работе, проделанной в течение всей жизни.По этому показателю самая тяжелая мышца в вашем теле — это та, которая работает 24 часа в сутки, 7 дней в неделю, чтобы поддерживать циркуляцию крови, в том числе и ко всем другим мышцам: к сердцу.

Язык может быть не таким сильным, как ягодицы, челюсть или сердце, но его укрепление все же может быть полезно. Таско говорит, что есть некоторые свидетельства того, что укрепляющие упражнения могут быть полезны людям, у которых есть проблемы с глотанием, например тем, кто восстанавливается после инсульта. Некоторые предполагают, что укрепление языка может даже улучшить речевые способности или помочь в лечении речевых патологий.Однако Таско предупреждает, что эти утверждения спорны и нуждаются в дальнейшей проверке.

Но одно можно сказать наверняка: язык — определенно не самая сильная мышца тела. Может быть, люди продолжают верить в его силу просто потому, что у них странный язык; это буквально у вас на лице, и людям нравится превосходная степень. «Люди хотят прикрепить к нему какой-то« эст », — говорит Искарус. «« Самый сильный »или то или иное — и это, может быть, то, что прижилось».

Артрит, боль в пояснице, кости, мышцы

Обзор

Что такое опорно-двигательный аппарат?

Ваша опорно-двигательная система включает кости, хрящи, связки, сухожилия и соединительные ткани.Ваш скелет обеспечивает основу для ваших мышц и других мягких тканей. Вместе они поддерживают вес вашего тела, поддерживают осанку и помогают двигаться.

Широкий спектр заболеваний и состояний может привести к проблемам опорно-двигательного аппарата. Старение, травмы, врожденные аномалии (врожденные дефекты) и болезни могут вызывать боль и ограничивать движение.

Вы можете сохранить здоровье опорно-двигательного аппарата, уделяя особое внимание своему общему здоровью. Придерживайтесь сбалансированной диеты, поддерживайте здоровый вес, регулярно занимайтесь спортом и обращайтесь к врачу для прохождения медицинских осмотров.

Функция

Как работает опорно-двигательный аппарат?

Нервная система (командный центр вашего тела) контролирует ваши произвольные движения мышц. Произвольные мышцы — это те мышцы, которыми вы управляете намеренно. Некоторые из них задействуют большие группы мышц для выполнения таких действий, как прыжки. Другие используют более мелкие движения, например, нажатие кнопки. Движение происходит, когда:

  1. Ваша нервная система (мозг и нервы) посылает сообщение для активации ваших скелетных (произвольных) мышц.
  2. Ваши мышечные волокна сокращаются (напрягаются) в ответ на сообщение.
  3. Когда мышца активируется или сжимается, она тянет за сухожилие. Сухожилия прикрепляют мышцы к костям.
  4. Сухожилие тянет кость, заставляя ее двигаться.
  5. Чтобы расслабить мышцы, ваша нервная система посылает другое сообщение. Это заставляет мышцы расслабляться или отключаться.
  6. Расслабленная мышца снимает напряжение, переводя кость в положение покоя.

Анатомия

Какие части опорно-двигательного аппарата?

Опорно-двигательный аппарат помогает вам стоять, сидеть, ходить, бегать и двигаться.В теле взрослого человека 206 костей и более 600 мышц, соединенных связками, сухожилиями и мягкими тканями.

Части опорно-двигательного аппарата:

  • Кости: Кости всех форм и размеров поддерживают ваше тело, защищают органы и ткани, накапливают кальций и жир и производят клетки крови. Твердая внешняя оболочка кости окружает губчатый центр. Кости обеспечивают структуру и форму вашему телу. Они работают с мышцами, сухожилиями, связками и другими соединительными тканями, помогая вам двигаться.
  • Хрящ: Тип соединительной ткани, хрящевая подкладка костей внутри суставов, вдоль позвоночника и в грудной клетке. Прочный эластичный хрящ защищает кости от трения друг о друга. У вас также есть хрящи в носу, ушах, тазу и легких.
  • Суставы: Кости соединяются, образуя суставы. Некоторые суставы имеют большой диапазон движений, например, шаровидный плечевой сустав. Другие суставы, такие как колено, позволяют костям двигаться вперед и назад, но не вращаются.
  • Мышцы: Каждая мышца состоит из тысяч эластичных волокон. Ваши мышцы позволяют вам двигаться, сидеть прямо и оставаться на месте. Некоторые мышцы помогают бегать, танцевать и поднимать тяжести. Вы используете других, чтобы написать свое имя, застегнуть пуговицу, поговорить и проглотить.
  • Связки: Связки, изготовленные из прочных коллагеновых волокон, соединяют кости и помогают стабилизировать суставы.
  • Сухожилия: Сухожилия соединяют мышцы с костями. Состоящие из фиброзной ткани и коллагена, сухожилия жесткие, но не очень эластичные.

Состояния и расстройства

Какие состояния и нарушения влияют на опорно-двигательный аппарат?

Сотни заболеваний могут вызвать проблемы с опорно-двигательным аппаратом. Они могут влиять на то, как вы двигаетесь, говорите и взаимодействуете с миром. Некоторые из наиболее частых причин скелетно-мышечной боли и проблем с движением:

  • Старение: В процессе естественного старения кости теряют свою плотность. Менее плотные кости могут привести к остеопорозу и переломам костей (переломам костей).С возрастом мышцы теряют свою массу, а хрящи начинают изнашиваться, что приводит к боли, жесткости и уменьшению диапазона движений. После травмы вы можете не зажить так быстро, как в молодости.
  • Артрит: Боль, воспаление и скованность суставов возникают в результате артрита. У пожилых людей больше шансов заболеть остеоартритом из-за разрушения хрящей внутри суставов, но это заболевание может затронуть людей любого возраста. Другие типы артрита также вызывают боль и воспаление в суставах, включая ревматоидный артрит, анкилозирующий спондилит и подагру.
  • Проблемы со спиной: Боль в спине и мышечные спазмы могут быть вызваны растяжением мышц или травмами, такими как грыжа межпозвоночного диска. Некоторые состояния, включая стеноз и сколиоз позвоночника, вызывают структурные проблемы в спине, что приводит к боли и ограничению подвижности.
  • Рак: Несколько типов рака поражают опорно-двигательный аппарат, включая рак костей. Опухоли, которые растут в соединительной ткани (саркомы), могут вызывать боль и проблемы с движением.
  • Врожденные аномалии: Врожденные аномалии, также известные как врожденные пороки, могут влиять на внешний вид, структуру и функции тела.Косолапость — одно из самых распространенных заболеваний опорно-двигательного аппарата, с которым рождаются дети. Это вызывает скованность и уменьшение диапазона движений.
  • Болезнь: На работу костей, мышц и соединительных тканей влияет широкий спектр заболеваний. Некоторые из них, например остеонекроз, приводят к разрушению костей и их гибели. Другие заболевания, такие как фиброзная дисплазия и болезнь хрупкости костей (несовершенный остеогенез), вызывают легкое переломание костей. Состояния, которые влияют на скелетные мышцы (миопатии), включают более 30 типов мышечной дистрофии.
  • Травмы: Сотни травм могут поражать кости, хрящи, мышцы и соединительные ткани. В результате чрезмерного использования могут возникнуть травмы, такие как синдром запястного канала, бурсит и тендинит. Растяжения, разрывы мышц, переломы костей и травмы сухожилий, связок и других мягких тканей могут быть результатом несчастных случаев и травм.

Насколько распространены эти состояния?

У всех время от времени возникают боли в мышцах и суставах. Одним из наиболее распространенных заболеваний опорно-двигательного аппарата является боль в спине, особенно в пояснице.Более 80% людей в Соединенных Штатах в какой-то момент жизни испытывают боли в спине. Артрит тоже очень распространен. Более 54 миллионов взрослых в США страдают артритом. Каждый год миллионы людей случаются с переломами, растяжениями и растяжениями. Большинство людей восстанавливаются после этих травм без длительных проблем со здоровьем.

Забота

Как сохранить здоровье опорно-двигательного аппарата?

Лучший способ заботиться о опорно-двигательном аппарате — поддерживать хорошее здоровье в целом.Чтобы ваши кости и мышцы оставались здоровыми, вам необходимо:

  • Регулярно выполняйте физические упражнения, и обязательно включайте в себя сочетание упражнений с отягощением и сердечно-сосудистой деятельности. Укрепление мышц может поддержать суставы и защитить их от повреждений.
  • Высыпайтесь , чтобы ваши кости и мышцы могли восстановиться и восстановиться.
  • Поддерживайте здоровый вес. Лишние килограммы оказывают давление на кости и суставы, вызывая ряд проблем со здоровьем.Если у вас избыточный вес, поговорите со своим врачом о здоровом плане похудания.
  • Выбирайте здоровую пищу , включая сбалансированную диету из фруктов и овощей, нежирного белка и молока для крепких костей.
  • Бросьте курить и воздержитесь от табака. Курение снижает кровоток по всему телу. Ваши кости, мышцы и мягкие ткани нуждаются в адекватном кровотоке, чтобы оставаться здоровыми.
  • Проходите регулярные осмотры и проверки здоровья в соответствии с возрастом. Если вам больше 65 лет, поговорите со своим врачом о сдаче теста на плотность костной ткани.

###

Часто задаваемые вопросы

Когда мне следует позвонить своему врачу?

Поговорите со своим врачом, если у вас есть боль, отек, скованность, ограниченный диапазон движений или проблемы с движением. Немедленно обратитесь к своему провайдеру, если какие-либо из этих изменений произойдут внезапно. Внезапные проблемы могут быть признаком серьезного состояния.

Записка из клиники Кливленда

У всех время от времени возникают боли в мышцах и мышцах.Хотя, возможно, вы не сможете предотвратить все растяжения, растяжения и переломы костей, вы сможете сохранить здоровье опорно-двигательного аппарата. Поддержание хорошего общего состояния здоровья снизит риск заболеваний и травм. А сохранение здоровья поможет вам быстрее выздороветь, если вы все-таки получите травму. Регулярно посещая врача, контролируя свой вес и заботясь о себе, вы защитите свои кости и мышцы, чтобы они могли и дальше защищать вас.

1.2: Что такое анатомия человека, что такое физиология человека

  1. Последнее обновление
  2. Сохранить как PDF
Без заголовков

Учебная цель

  • Определите термины анатомия и физиология и приведите конкретные примеры, показывающие взаимосвязь между анатомией и физиологией

Человек Анатомия (ana- = «вверх», tome = «разрезать») часто определяют как исследование структур человеческого тела.Анатомия фокусируется на описании формы или на том, как структуры тела на разных уровнях выглядят . Макроанатомия изучает макроскопические структуры (например, тело, органы и системы органов), а гистология изучает микроскопические структуры (например, ткани, клетки и органеллы).

Человек Физиология (Physio = «природа»; -logy = «исследование») изучает «природу» человеческого тела, природу в том смысле, как работают структуры на разных уровнях.Физиология фокусируется на функции или на том, как работают структуры на разных уровнях .

Анатомия и физиология тесно связаны. Рука может захватывать вещи (функция), потому что длина, форма и подвижность пальцев (форма) определяют, какие вещи рука может захватывать (функция). Мышца сокращается и объединяет кости (функция) благодаря расположению мышц и костей, а расположение органелл внутри мышечных клеток (форма) определяет, насколько и как долго мышца может сокращаться (функционировать).

Функции строения тела зависят от их формы. То, как работают структуры, зависит от того, как они организованы. Итак, понимание физиологии требует понимания анатомии, и наоборот.

Понятия, термины и проверка фактов

Вопросы для изучения Напишите свой ответ в форме предложения (не отвечайте нечеткими словами)

1. Что такое анатомия?
2. Что такое грубая анатомия?
3. Что такое гистология?
4. Что такое физиология?

Системы поддержки | Биология для майоров II

Опишите мышечную, скелетную и покровную системы

Этот набор систем тела был сгруппирован как «системы поддержки».Помните, что это не жесткая категоризация: эти системы сгруппированы вместе, чтобы помочь вам организовать обучение. Эти системы поддержки обеспечивают структуру (и поддержку!) Вашего тела: ваши мышцы, скелет и кожу.

Цели обучения

  • Определить структуру и функцию мышечной системы
  • Определить структуру и функцию скелетной системы
  • Определить структуру и функцию покровной системы

Мышечная система

Мышечная система — это биологическая система человека, которая производит движение.Мышечная система позвоночных контролируется нервной системой, хотя некоторые мышцы, например сердечная, могут быть полностью автономными. Мышца — это сократительная ткань, происходящая из мезодермального слоя эмбриональных половых клеток. Его функция — создавать силу и вызывать движение, либо движение, либо движение во внутренних органах. Мышечные сокращения в значительной степени происходят без осознания и необходимы для выживания, как сокращение сердца или перистальтика, которые проталкивают пищу через пищеварительную систему.Произвольное сокращение мышц используется для движения тела и может точно контролироваться, например, движениями пальцев или грубыми движениями, такими как бицепсы и трицепсы.

Рисунок 1. Структура мышц

Мышца состоит из мышечных клеток (иногда называемых «мышечными волокнами»). Внутри клеток находятся миофибриллы; миофибриллы содержат саркомеры, состоящие из актина и миозина. Отдельные мышечные клетки выстланы эндомизием. Мышечные клетки связаны перимизием в пучки, называемые пучками.Эти пучки затем группируются вместе, образуя мышцы, и покрываются эпимизием. Мышечные веретена распределены по мускулам и обеспечивают сенсорную обратную связь с центральной нервной системой.

Скелетная мышца, которая включает мышцы из скелетной ткани, состоит из отдельных групп (рис. 1). Примером может служить двуглавая мышца плеча. Связан сухожилиями с отростками скелета. Напротив, гладкие мышцы встречаются на разных уровнях почти в каждом органе, от кожи (в которой она контролирует эрекцию волос на теле) до кровеносных сосудов и пищеварительного тракта (в которых она контролирует калибр просвета и перистальтику, соответственно).

В теле человека около 640 скелетных мышц. Вопреки распространенному мнению, количество мышечных волокон нельзя увеличить с помощью упражнений; вместо этого мышечные клетки просто становятся больше. Однако считается, что миофибриллы обладают ограниченной способностью к росту за счет гипертрофии и расщепляются, если к ним предъявляется повышенный спрос. В теле есть три основных типа мышц: гладкие, сердечные и скелетные (см. Рисунок 2). Хотя они во многом различаются, все они используют актин, скользящий по миозину, для сокращения и расслабления мышц.В скелетных мышцах сокращение стимулируется в каждой клетке нервными импульсами, которые высвобождают ацетилхолин в нервно-мышечном соединении, создавая потенциалы действия вдоль клеточной мембраны. Все скелетные мышцы и многие сокращения гладких мышц стимулируются связыванием нейромедиатора ацетилхолина. На мышечную активность приходится большая часть потребления энергии организмом. Мышцы накапливают энергию для собственного использования в виде гликогена, который составляет около 1% от их массы. Гликоген может быстро превращаться в глюкозу, когда требуется больше энергии.

Типы

Рис. 2. Гладкомышечные клетки не имеют бороздок, в отличие от клеток скелетных мышц. Клетки сердечной мышцы имеют бороздки, но, в отличие от многоядерных скелетных клеток, имеют только одно ядро. Ткань сердечной мышцы также имеет вставочные диски, специализированные области, проходящие вдоль плазматической мембраны, которые соединяются с соседними клетками сердечной мышцы и помогают передавать электрический импульс от клетки к клетке.

  • Гладкая мышца или «непроизвольная мышца» состоит из веретенообразных мышечных клеток, находящихся в стенках органов и структур, таких как пищевод, желудок, кишечник, бронхи, матка, мочеточники, мочевой пузырь и кровеносные сосуды.Гладкомышечные клетки содержат только одно ядро ​​и без бороздок.
  • Сердечная мышца также является «непроизвольной мышцей», но имеет поперечно-полосатую структуру и внешний вид. Как и гладкие мышцы, клетки сердечной мышцы содержат только одно ядро. Сердечная мышца находится только в сердце.
  • Скелетная мышца или «произвольная мышца» прикрепляется сухожилиями к кости и используется для осуществления скелетных движений, таких как передвижение. Клетки скелетных мышц многоядерные, с периферическими ядрами.Скелетные мышцы называются «поперечнополосатыми» из-за того, что под световым микроскопом они выглядят как продольные. Функции скелетной мышцы включают:
    • Опора кузова
    • Помощь в движении костей
    • Помогает поддерживать постоянную температуру по всему телу
    • Помогает в движении сердечно-сосудистых и лимфатических сосудов посредством сокращений
    • Защита внутренних органов и обеспечение стабильности суставов

Сердечные и скелетные мышцы имеют поперечнополосатую форму, поскольку они содержат саркомеры и упакованы в очень регулярные группы пучков; гладкие мышцы не имеют ни того, ни другого.Поперечно-полосатая мышца часто используется короткими интенсивными импульсами, тогда как гладкая мышца выдерживает более длительные или даже почти постоянные сокращения.

Скелетные мышцы делятся на несколько подтипов:

  1. Тип I, медленный окислительный, медленно сокращающийся , или «красная» мышца плотна капиллярами и богата митохондриями и миоглобином, что придает мышечной ткани характерный красный цвет. Он может переносить больше кислорода и поддерживать аэробную активность.
  2. Тип II, быстро сокращающийся , мышцы делятся на три основных типа, которые в порядке увеличения скорости сокращения:
    1. Тип IIa, который, как и медленные мышцы, является аэробным, богат митохондриями и капиллярами и кажется красным.
    2. Тип IIx (также известный как тип IId) с меньшей плотностью митохондрий и миоглобина. Это самый быстрый тип мышц у человека. Он может сокращаться быстрее и с большей силой, чем окислительная мышца, но может выдерживать только короткие анаэробные всплески активности, прежде чем мышечное сокращение станет болезненным (что часто объясняется накоплением молочной кислоты). N.B. в некоторых книгах и статьях эта мышца у людей была названа типом IIB
    3. , что сбивает с толку.
    4. Тип IIb, анаэробная, гликолитическая, «белая» мышца, еще менее плотная по митохондриям и миоглобину.У мелких животных, таких как грызуны или кролики, это основной быстрый тип мышц, объясняющий бледный цвет их мяса.

Для большинства скелетных мышц сокращение происходит в результате сознательного усилия, исходящего из мозга. Мозг посылает сигналы в виде потенциалов действия через нервную систему к двигательному нейрону, который иннервирует мышечное волокно. Однако некоторые мышцы (например, сердце) не сокращаются в результате сознательного усилия. Они считаются автономными.Кроме того, не всегда необходимо, чтобы сигналы исходили из мозга. Рефлексы — это быстрые бессознательные мышечные реакции, возникающие из-за неожиданных физических раздражителей. Потенциалы действия для рефлексов возникают не в головном, а в спинном мозге.

Существует три основных типа мышечных сокращений, соответствующих типам мышц: сокращения скелетных мышц, сокращения сердечной мышцы и сокращения гладких мышц.

Скелетная система

Рисунок 3.Части длинной кости.

Скелетная система не только помогает обеспечить движение и поддержку, но также служит местом хранения кальция и неорганических солей и источником клеток крови. В теле взрослого человека 206 костей самых разных форм и размеров. В основном существует 4 типа костей, классифицируемых по форме:

  • Длинные кости имеют продольную ось (рисунок 3).
  • Короткие кости имеют короткую продольную ось и имеют форму куба.
  • Плоские кости тонкие и изогнутые, как некоторые кости черепа.
  • Кости неправильной формы часто встречаются группами и имеют различные формы и размеры.

Обратите внимание на длинный стержень или диафиз в середине кости. Диафиз содержит компактную кость, окружающую медуллярную полость, содержащую костный мозг. На обоих концах находится эпифиз, содержащий губчатую или губчатую кость. Эпифизарная линия — это остаток пластинки роста. Эпифизы также содержат гиалиновый хрящ для образования суставов с другими костями. Кость окружает мембрана, называемая надкостницей.Надкостница содержит кровеносные сосуды и клетки, которые помогают восстанавливать кости.

В костях также есть 2 типа костной ткани в разном количестве. Компактная кость (иногда называемая кортикальной костью) очень плотная. Губчатая кость (иногда называемая губчатой ​​костью) больше похожа на трабекулярный матрикс (рис. 4). Он обнаруживается в центральных областях некоторых костей черепа или на концах (эпифизах) длинных костей. Клетки, образующие кость (остеоциты), получают питательные вещества путем диффузии.

Обратите внимание на губчатый вид костно-губчатой ​​кости.Кортикальная кость расположена у краев кости и более плотная.

Рисунок 4. Трабекулярная и кортикальная кость бедренной кости. (Фото Брюса Форсиа).

Структура кости

Рисунок 5. Гаверсова система.

Компактная кость организована в соответствии со структурными единицами, называемыми гаверсовскими системами или остеонами (рис. 5). Они расположены вдоль силовых линий и выстраиваются вдоль длинной оси кости. Гаверсовы системы соединены вместе и образуют взаимосвязанную структуру, которая обеспечивает поддержку и прочность костей.

Гаверсовские системы содержат центральный канал (гаверсовский канал), по которому проходят кровеносные сосуды и нервы. Кость откладывается по концентрическим кольцам, называемым ламелями. Вдоль ламелей есть небольшие отверстия, называемые лакунами. Лакуны содержат жидкость и костные клетки, называемые остеоцитами. Во всех направлениях от лакун расходятся небольшие каналы, называемые каналикулами. Системы Гаверса связаны между собой серией более крупных каналов, называемых каналами Фольксмана (перфорирующими каналами).

Костные клетки

В кости есть 3 основных типа клеток.Остеобласты подвергаются митозу и выделяют вещество, которое действует как каркас кости. Как только это вещество (называемое остеоидом) выделяется, минералы могут откладываться и образовывать затвердевшую кость. Остеобласты реагируют на определенные гормоны образования костей, а также на физический стресс. Остеоциты — это зрелые остеобласты, которые не могут делиться путем митоза (рис. 6).

Рис. 6. Остеоциты — это зрелые остеобласты, расположенные в лакуне. Они окружены костным матриксом.

Остеоциты располагаются в лакунах.Остеокласты способны деминерализовать кость. Они высвобождают кальций из костей, чтобы сделать его доступным для организма в зависимости от потребностей организма.

Костный мозг

Костный мозг находится в костномозговой полости длинных костей и в некоторых губчатых костях. Есть 2 вида кабачков. Красный костный мозг содержится в костях младенцев и детей. Его называют красным, потому что он содержит большое количество красных кровяных телец. У взрослых красный костный мозг заменяется желтым. Его называют желтым, потому что он содержит большую долю жировых клеток.Желтый костный мозг снижает его способность образовывать новые эритроциты. Однако не все кости взрослого человека содержат желтый костный мозг. Следующие кости по-прежнему содержат красный костный мозг и вырабатывают эритроциты:

  • Проксимальный конец плечевой кости
  • Ребра
  • Тела позвонков
  • Таз
  • Бедренная кость

Скелет

Каркас разделен на 2 части: аксиальный и аппендикулярный (рис. 7). Осевой скелет включает череп, позвоночник, грудную клетку и крестец и обозначен синим цветом на рисунке 7.Аппендикулярный скелет обозначен красными метками.

Рисунок 7. Каркас.

Видеообзор

Это видео дает еще одно введение в систему скелета:

Покровная система

Покровная система состоит из кожи, волос, ногтей, подкожной клетчатки под кожей и различных желез. Наиболее очевидной функцией покровной системы является защита, которую кожа обеспечивает нижележащим тканям.Кожа не только задерживает попадание большинства вредных веществ, но и предотвращает потерю жидкости.

Основная функция подкожной клетчатки — соединение кожи с нижележащими тканями, такими как мышцы. Волосы на коже головы обеспечивают защиту головы от холода. Волосы на ресницах и бровях защищают глаза от пыли и пота, а волосы в ноздрях не позволяют пыли попадать в носовые полости. Ногти защищают кончики пальцев рук и ног от механических травм. Ногти позволяют пальцам поднимать мелкие предметы.

В покровной системе есть четыре типа желез: потовые (потовые), сальные, серные и молочные железы. Все это экзокринные железы, секретирующие материалы вне клеток и тела. Судоносные железы — это железы, производящие пот. Они важны для поддержания температуры тела. Сальные железы — это сальные железы, которые помогают подавлять бактерии, сохраняют водонепроницаемость и предотвращают высыхание волос и кожи. Керуминозные железы производят ушную серу, которая сохраняет эластичность наружной поверхности барабанной перепонки и предотвращает ее высыхание.Молочные железы производят молоко.

Кожа

В зоологии и дерматологии кожа — это орган покровной системы, состоящий из слоя тканей, которые охраняют нижележащие мышцы и органы. Как интерфейс с окружающей средой, он играет важнейшую роль в защите от патогенов. Его другие основные функции — изоляция и регулирование температуры, ощущение и синтез витаминов D и B. Кожа считается одной из важнейших частей тела.

Кожа имеет пигментацию, известную как меланин, которая обеспечивается меланоцитами.Меланин поглощает часть потенциально опасного излучения солнечного света. Он также содержит ферменты репарации ДНК, которые обращают вспять УФ-повреждение, и люди, у которых отсутствуют гены этих ферментов, часто страдают от рака кожи. Одна из форм, преимущественно вырабатываемых ультрафиолетовым светом, злокачественная меланома, является особенно инвазивной, вызывает быстрое распространение и часто может быть смертельной. Пигментация кожи человека разительно различается среди населения. Иногда это приводило к классификации людей по цвету кожи.

Поврежденная кожа будет заживать путем образования рубцовой ткани, что часто приводит к обесцвечиванию и депигментации кожи.

Кожу часто называют «самым большим органом человеческого тела». Это относится к внешней поверхности, так как она покрывает тело и имеет наибольшую площадь поверхности среди всех органов. Более того, это относится к весу, так как он весит больше, чем любой отдельный внутренний орган, составляя около 15 процентов веса тела. У среднего взрослого человека площадь поверхности кожи составляет от 1.5–2,0 квадратных метра, большая часть толщиной 2–3 мм. В среднем квадратный дюйм кожи содержит 650 потовых желез, 20 кровеносных сосудов, 60 000 меланоцитов и более тысячи нервных окончаний.

Использование натуральной или синтетической косметики для улучшения внешнего вида лица и состояния кожи (например, контроль пор и очищение кожи головы) широко распространено во многих культурах.

Слои

Кожа состоит из двух основных слоев, состоящих из разных тканей и выполняющих очень разные функции.

Кожа состоит из эпидермиса и дермы . Ниже этих слоев лежит гиподерма или подкожный жировой слой , который обычно не классифицируется как слой кожи.

Рис. 8. Кожа состоит из двух основных слоев: эпидермиса, состоящего из плотно упакованных эпителиальных клеток, и дермы, состоящей из плотной нерегулярной соединительной ткани, в которой находятся кровеносные сосуды, волосяные фолликулы, потовые железы и другие структуры. Под дермой находится гиподерма, которая состоит в основном из рыхлой соединительной и жировой ткани.

Внешний эпидермис состоит из многослойного плоского ороговевшего эпителия с подстилающей базальной мембраной. Он не содержит кровеносных сосудов и питается за счет диффузии из дермы. Основным типом клеток, составляющих эпидермис, являются кератиноциты, также присутствуют меланоциты и клетки Лангерганса. Эпидермис может быть далее подразделен на следующие слоев (начиная с самого внешнего слоя): роговой, просветный, гранулезный, шиповидный, базальный. Клетки образуются путем митоза в самых внутренних слоях.Они продвигаются вверх по слоям, изменяя форму и состав по мере дифференциации, вызывая экспрессию новых типов кератиновых генов. В конечном итоге они достигают рогового слоя и отслаиваются (шелушение). Этот процесс называется кератинизацией и происходит в течение примерно 30 дней. Этот слой кожи отвечает за удержание воды в организме и предотвращение попадания других вредных химических веществ и патогенов.

Кровеносные капилляры находятся под дермой и связаны с артериолой и венулой.Сосуды артериального шунта могут обходить сеть в ушах, носу и на кончиках пальцев.

Дерма расположена ниже эпидермиса и содержит ряд структур, включая кровеносные сосуды, нервы, волосяные фолликулы, гладкие мышцы, железы и лимфатическую ткань. Он состоит из рыхлой соединительной ткани, иначе называемой ареолярной соединительной тканью, в которой присутствуют коллаген, эластин и ретикулярные волокна. Мышцы-эректоры, прикрепленные между волосяным сосочком и эпидермисом, могут сокращаться, что приводит к вытягиванию волосяного волокна в вертикальное положение и, как следствие, к появлению мурашек по коже.Основными типами клеток являются фибробласты, адипоциты (жировые отложения) и макрофаги. Сальные железы — это экзокринные железы, вырабатывающие смесь липидов и воскообразных веществ: смазывающее, водонепроницаемое, смягчающее и антибактерицидное действие — это одни из многих функций кожного сала. Потовые железы открываются через канал к коже через поры.

Дерма состоит из волокнистой соединительной ткани неправильной формы, состоящей из волокон коллагена и эластина. Его можно разделить на папиллярный и ретикулярный слои.Сосочковый слой является крайним наружным и простирается в эпидермис, снабжая его сосудами. Он состоит из рыхлых волокон. Папиллярные гребни составляют линии рук, оставляющие нам отпечатки пальцев. Ретикулярный слой более плотный и переходит в гиподерму. Он содержит основную массу структур (например, потовых желез). Сетчатый слой состоит из неравномерно расположенных волокон и сопротивляется растяжению.

Гиподерма не является частью кожи и расположена ниже дермы.Его цель — прикрепить кожу к подлежащей кости и мышцам, а также снабдить ее кровеносными сосудами и нервами. Он состоит из рыхлой соединительной ткани и эластина. Основные типы клеток — фибробласты, макрофаги и адипоциты (гиподерма содержит 95% жира). Жир служит подкладкой и изоляцией для тела.

Функции
  1. Защита: Кожа создает анатомический барьер между внутренней и внешней средой при защите организма; Клетки Лангерганса кожи являются частью иммунной системы
  2. Ощущение: кожа содержит множество нервных окончаний, которые реагируют на тепло, холод, прикосновение, давление, вибрацию и повреждение тканей
  3. Регулировка тепла: в коже поступает гораздо больше крови, чем требуется, что позволяет точно контролировать потерю энергии за счет излучения, конвекции и теплопроводности.Расширенные кровеносные сосуды увеличивают перфузию и потерю тепла, в то время как суженные сосуды значительно уменьшают кожный кровоток и сохраняют тепло. Мышцы, выпрямляющие пили, имеют большое значение у животных.

Волосы

У людей три разных типа волос:

  • Lanugo, тонкие непигментированные волосы, покрывающие почти все тело плода, хотя к моменту рождения ребенка большая их часть была заменена пушковыми волосами
  • Веллус — короткие пушистые волосы на теле «персикового пуха» (также не пигментированные), которые растут в большинстве мест на теле человека.Хотя он встречается у представителей обоих полов и составляет большую часть волос у детей, у мужчин пушковый процент гораздо меньше (около 10%), тогда как у женщин 2/3 пушковых волос.
  • Терминальные волосы, полностью развитые волосы, которые обычно длиннее, грубее, толще и темнее пушковых волос, и часто встречаются в таких областях, как подмышечные впадины, мужская борода и лобок.

Гвозди

Рисунок 9. Части ногтя

Ноготь — важная структура, состоящая из кератина.Ноготь обычно служит двум целям. Он служит защитной пластиной и усиливает ощущение кончика пальца. Защитная функция ногтя широко известна, но не менее важна функция ощущения. На кончике пальца есть множество нервных окончаний, позволяющих нам получать объемы информации об объектах, которых мы касаемся. Гвоздь действует как противодействие кончику пальца, обеспечивая еще больший сенсорный ввод при прикосновении к объекту.

Структура ногтей

Структура, которую мы знаем как ноготь, делится на шесть определенных частей: корень, ногтевое ложе, ногтевая пластина, эпонихий (кутикула), перионихий и гипонихий.

Корень Корень ногтя также известен как зародышевый матрикс. Эта часть ногтя фактически находится под кожей за ногтем и заходит на несколько миллиметров внутрь пальца. Корень ногтя составляет большую часть ногтя и ногтевого ложа. В этой части ногтя нет меланоцитов или клеток, продуцирующих меланин. Край зародышевого матрикса выглядит как белая структура в форме полумесяца, называемая лунулой.

Ногтевое ложе Ногтевое ложе является частью матрицы ногтя, называемой стерильной матрицей.Он простирается от края зародышевого матрикса или лунулы до гипонихия. Ногтевое ложе содержит кровеносные сосуды, нервы и меланоциты или клетки, продуцирующие меланин. Поскольку гвоздь образуется из корня, он стекает вниз по ногтевому ложу, добавляя материал к нижней поверхности ногтя, делая его толще. Для нормального роста ногтей важно, чтобы ногтевое ложе было гладким. В противном случае ноготь может расколоться или образоваться бороздки, которые могут быть непривлекательными с косметической точки зрения.

Ногтевая пластина Ногтевая пластина представляет собой ноготь, сделанный из полупрозрачного кератина.Розовый цвет ногтя обусловлен кровеносными сосудами под ногтем. На нижней поверхности ногтевой пластины есть бороздки по длине ногтя, которые помогают прикрепить его к ногтевому ложу.

Эпонихий Кутикула ногтя также называется эпонихием. Кутикула расположена между кожей пальца и ногтевой пластиной, сплавляя эти структуры вместе и обеспечивая водонепроницаемый барьер.

Perionychium Perioncyhium — это кожа, которая покрывает ногтевую пластину по бокам.Он также известен как паронихиальный край. Перионихий — это место заусенцев, вросших ногтей и кожной инфекции, называемой паронихией.

Гипонихий Гипонихий — это область между ногтевой пластиной и кончиком пальца. Это соединение между свободным краем ногтя и кожей кончика пальца, которое также является водонепроницаемым барьером.

Сальники

Потовые железы

Рис. 10. Эккриновые железы представляют собой спиральные железы в дерме, выделяющие пот, в основном состоящий из воды.

У человека есть два типа потовых желез, которые сильно различаются как по составу пота, так и по его назначению.

Эккрин (он же мерокрин)

Эккриновые потовые железы — это экзокринные железы, распределенные по всей поверхности тела, но их особенно много на ладонях рук, подошвах стоп и на лбу. Они производят пот, который состоит в основном из воды (99%) с различными солями. Основная функция — регулирование температуры тела.

Эккриновые потовые железы представляют собой спиральные трубчатые железы, ведущие непосредственно к самому поверхностному слою эпидермиса (вне слоя кожи), но проникающие во внутренний слой кожи (слой дермы). Они распространены почти по всей поверхности тела человека и многих других видов, но отсутствуют у некоторых морских и пушных видов. Потовые железы контролируются симпатическими холинергическими нервами, которые контролируются центром в гипоталамусе. Гипоталамус напрямую воспринимает внутреннюю температуру, а также получает данные от температурных рецепторов на коже и изменяет выделение пота, наряду с другими процессами терморегуляции.

Эккринный пот человека состоит в основном из воды с различными солями и органическими соединениями в растворе. Он содержит незначительное количество жирных веществ, мочевины и других отходов. Концентрация натрия колеблется в пределах 35–65 ммоль / л и ниже у людей, акклиматизированных в жаркой среде. Пот других видов обычно отличается по составу.

Апокрин

Апокриновые потовые железы развиваются только в период раннего и среднего полового созревания (примерно в возрасте 15 лет) и выделяют больше, чем обычно, количество пота в течение примерно месяца, а затем регулируют и выделяют нормальное количество пота через определенный период времени. Апокриновые потовые железы производят пот, содержащий жирные вещества. Эти железы в основном находятся в подмышечных впадинах и вокруг области гениталий, и их активность является основной причиной запаха пота из-за бактерий, которые расщепляют органические соединения пота из этих желез. Эмоциональный стресс увеличивает выработку пота апокринными железами, а точнее: пот, уже присутствующий в канальцах, вытесняется. Апокриновые потовые железы, по сути, служат ароматическими железами.

Посмотрите небольшой фильм о потовых железах: как потеет наше тело.
Сальные железы

Рис. 11. Волосяные фолликулы берут начало в эпидермисе и состоят из множества различных частей.

сальных желез — это железы, обнаруженные в коже млекопитающих. Они выделяют маслянистое вещество, которое называется кожный жир (латинское означает жир или жир ), которое состоит из жира (липидов) и остатков мертвых жировых клеток. У людей эти железы расположены по всей коже, за исключением ладоней рук и подошв ног.Кожный жир защищает волосы и кожу от влаги, защищает их от высыхания, ломкости и растрескивания. Он также может подавлять рост микроорганизмов на коже.

Сальные железы обычно находятся в покрытых волосами областях, где они соединены с волосяными фолликулами, чтобы откладывать кожный жир на волосах и переносить его на поверхность кожи вдоль стержня волоса. Структура, состоящая из волоса, волосяного фолликула и сальной железы, также известна как волосяной элемент , . Сальные железы также обнаруживаются в безволосых участках губ, век, полового члена, малых половых губ и сосков; здесь кожный жир достигает поверхности через протоки.В железах кожный жир вырабатывается специализированными клетками и высвобождается по мере их разрыва; Таким образом, сальные железы классифицируются как голокринные железы.

Кожное сало без запаха, но его бактериальное расщепление может вызывать запах. Кожный жир является причиной того, что у некоторых людей волосы становятся «жирными», если их не мыть в течение нескольких дней. Ушная сера частично представляет собой кожный жир, как и слизисто-гнойные выделения, сухое вещество, скапливающееся в уголках глаза после сна.

Состав кожного сала варьируется от вида к виду; у людей содержание липидов состоит из примерно 25% сложных моноэфиров парафина, 41% триглицеридов, 16% свободных жирных кислот и 12% сквалена.

Активность сальных желез увеличивается в период полового созревания из-за повышенного уровня андрогенов.

Сальные железы участвуют в таких кожных заболеваниях, как акне и волосяной кератоз. Закупорка сальной железы может привести к образованию кисты сальной железы. Изотретиноин, отпускаемый по рецепту, значительно снижает количество кожного сала, вырабатываемого сальными железами, и используется для лечения акне. Чрезмерное использование (до 10 раз предписанного врачом количества) анаболических стероидов культуристами для предотвращения потери веса, как правило, стимулирует сальные железы, что может вызвать прыщи.

Сальные железы человеческого плода в утробе матери выделяют вещество, называемое vernix caseosa, «восковое» или «сырное» белое вещество, покрывающее кожу новорожденных.

Препуциальные железы мышей и крыс представляют собой большие модифицированные сальные железы, вырабатывающие феромоны.

Серные железы

Рис. 12. Человеческая ушная сера влажного типа на ватном тампоне.

Ушная сера , также известная под медицинским термином cerumen , представляет собой желтоватое восковое вещество, выделяемое в слуховой проход человека и многих других млекопитающих.Он играет жизненно важную роль в ушном канале человека, помогая очищать и смазывать его, а также обеспечивает некоторую защиту от бактерий, грибков и насекомых. Избыточная или поврежденная серная проба может давить на барабанную перепонку и / или закупорить наружный слуховой проход и ухудшить слух.

Производство, состав и разные виды

Серная пыльца образуется во внешней трети хрящевой части слухового прохода человека. Это смесь вязких секретов сальных желез и менее вязких выделений модифицированных апокриновых потовых желез.

Различают два различных генетически детерминированных типа ушной серы — влажный тип, который является доминирующим, и сухой тип, который является рецессивным. Азиаты и коренные американцы чаще имеют сухой тип серы (серая и чешуйчатая), тогда как кавказцы и африканцы чаще имеют влажный тип (от медово-коричневого до темно-коричневого и влажного). Церуменный тип использовался антропологами для отслеживания моделей миграции людей, например, инуитов.

Различие в типе серы прослеживается до единственного изменения основания (однонуклеотидный полиморфизм) в гене, известном как «ген АТФ-связывающей кассеты C11».Эта мутация не только влияет на тип серы, но и снижает выработку потоотделения. Исследователи предполагают, что уменьшение потоотделения было полезно для предков жителей Восточной Азии и коренных американцев, которые, как считается, жили в холодном климате.

Функция

Очистка. Очистка слухового прохода происходит в результате «конвейерной ленты» процесса миграции эпителия, чему способствует движение челюсти. Клетки, сформированные в центре барабанной перепонки, мигрируют наружу от пупка (со скоростью, эквивалентной росту ногтей) к стенкам слухового прохода и ускоряются к входу в слуховой проход.Серу из канала также выводится наружу, унося с собой любую грязь, пыль и твердые частицы, которые могли собраться в канале. Движение челюсти способствует этому процессу, удаляя мусор, прикрепленный к стенкам слухового прохода, увеличивая вероятность его экструзии.

Смазка. Смазка предотвращает высыхание и зуд кожи внутри слухового прохода (известный как астеатоз ). Смазывающие свойства возникают из-за высокого содержания липидов в кожном сале, вырабатываемом сальными железами.По крайней мере, в серу влажного типа эти липиды включают холестерин, сквален и многие длинноцепочечные жирные кислоты и спирты.

Антибактериальные и противогрибковые свойства. В то время как исследования, проводившиеся до 1960-х годов, обнаружили мало доказательств, подтверждающих антибактериальную роль серной кислоты, более поздние исследования показали, что серная пыль обеспечивает некоторую бактерицидную защиту от некоторых штаммов бактерий. Было обнаружено, что церумен эффективно снижает жизнеспособность широкого спектра бактерий (иногда до 99%), включая Haemophilus influenzae , Staphylococcus aureus и многие варианты Escherichia coli .Рост двух грибов, обычно присутствующих при отомикозе, также значительно подавлялся серной пылью человека. Эти противомикробные свойства обусловлены главным образом наличием насыщенных жирных кислот, лизоцима и, особенно, относительно низким pH серной кислоты (обычно около 6,1 у нормальных людей).

Молочные железы

Молочные железы — это органы, вырабатывающие у самок млекопитающих молоко для пропитания молоди. Эти экзокринные железы представляют собой увеличенные и модифицированные потовые железы и характерны для млекопитающих, давших этому классу название.

Структура

Рис. 13. Поперечный разрез груди женщины.

Основными компонентами молочной железы являются альвеолы ​​ (полые полости размером несколько миллиметров), выстланные секретирующими молоко эпителиальными клетками и окруженные миоэпителиальными клетками. Эти альвеолы ​​соединяются, образуя группы, известные как долек , и каждая долька имеет млечный проток , который стекает в отверстия в соске. Миоэпителиальные клетки могут сокращаться, подобно мышечным клеткам, и, таким образом, выталкивать молоко из альвеол через млечные протоки к соску, где оно собирается в расширениях ( синусов, ) протоков.Сосущий ребенок, по сути, выжимает молоко из этих носовых пазух.

Различают простую молочную железу , которая состоит из всей выделяющей молоко ткани, ведущей к одному молочному протоку, и сложную молочную железу , которая состоит из всех простых молочных желез, обслуживающих один сосок.

У людей обычно есть две сложные молочные железы, по одной в каждой груди, и каждая сложная молочная железа состоит из 10–20 простых желез. (Наличие более двух сосков известно как полителия, а наличие более двух сложных молочных желез — как полимастия.)

Посетите «Ткань груди», чтобы посмотреть фильм о груди.
Развитие и гормональный контроль

Развитие молочных желез контролируется гормонами. Молочные железы существуют у обоих полов, но они находятся в зачаточном состоянии до полового созревания, когда в ответ на гормоны яичников они начинают развиваться у женщин. Эстроген способствует образованию, а тестостерон его подавляет.

Во время рождения у ребенка есть млечные протоки, но нет альвеол. Небольшое ветвление происходит до полового созревания, когда эстрогены яичников стимулируют ветвление, дифференцировку протоков в сферические массы клеток, которые станут альвеолами.Истинные секреторные альвеолы ​​развиваются только во время беременности, когда повышение уровня эстрогена и прогестерона вызывает дальнейшее разветвление и дифференцировку клеток протока, вместе с увеличением жировой ткани и более богатым кровотоком.

Молозиво выделяется на поздних сроках беременности и в течение первых нескольких дней после родов. Истинная секреция молока (лактация) начинается через несколько дней из-за снижения циркулирующего прогестерона и присутствия гормона пролактина. Сосание ребенка вызывает высвобождение гормона окситоцина, который стимулирует сокращение миоэпителиальных клеток.

Проверьте свое понимание

Ответьте на вопросы ниже, чтобы увидеть, насколько хорошо вы понимаете темы, затронутые в предыдущем разделе.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *