В чем содержится валин: Незаменимые аминокислоты

Содержание

Незаменимые аминокислоты

Незаменимые аминокислоты — необходимые аминокислоты, которые не могут быть синтезированы в том или ином организме, в частности, в организме человека. Поэтому их поступление в организм с пищей необходимо.

Незаменимыми для человека и животных являются 8 аминокислот: валин, изолейцин, лейцин, лизин, метионин, треонин, триптофан и фенилаланин.

 Содержание незаменимых аминокислот в еде

  • Валин содержится в зерновых, мясе, грибах, молочных продуктах, арахисе, сое
  • Изолейцин содержится в миндале, кешью, курином мясе, турецком горохе (нут), яйцах, рыбе, чечевице, печени, мясе, ржи, большинстве семян, сое.
  • Лейцин содержится в мясе, рыбе, буром рисе, чечевице, орехах, большинстве семян.
  • Лизин содержится в рыбе, мясе, молочных продуктах, пшенице,орехах.
  • Метионин содержится в молоке, мясе, рыбе, яйцах, бобах, фасоли, чечевице и сое.
  • Треонин содержится в молочных продуктах и яйцах, в умеренных количествах в орехах и бобах.
  • Триптофан содержится в овсе, бананах, сушёных финиках, арахисе, кунжуте, кедровых орехах, молоке, йогурте, твороге, рыбе, курице, индейке, мясе.
  • Фенилаланин содержится в говядине, курином мясе, рыбе, соевых бобах, яйцах, твороге, молоке. Также является составной частью синтетического сахарозаменителя — аспартама, активно используемого в пищевой промышленности.

Таблица содержания незаменимых аминокислот в продуктах

(грамм на 100 грамм продукта)

№ п/п продукт лейцин изолейцин гистидин тирозин глицин лизин валин метионин фенилаланин Иусс*
1 Молоко женское 0,108 0,062 0,028 0,06 0,042 0,082 0,072 0,022 0,056 0,053
2 Молоко коровье 0,278 0,182 0,081 0,119
0,03
0,218 0,189 0,068 0,136 0,130
3 Кефир 0,263 0,173 0,075 0,112 0,056 0,209 0,183 0,063 0,138 0,126
4 Творог 0,924 0,548 0,306 0,456 0,184 0,725 0,695 0,263 0,491 0,467
5 Яйцо куриное 1,13 0,83 0,294 0,515 0,37 0,883 0,895 0,378 0,732 0,611
6 Мясо говяжье 1,73 1,06 0,805 0,596 1,447 2,009 1,156 0,528 0,789 0,961
7 Мясо куриное 1,62 1,117 0,697
0,66
1,519 1,975 1,024 0,494 0,932 0,956
8 Печень говяжья 1,543 0,8 0,439 0,47 0,903 1,295 0,987 0,345 0,845 0,724
9 Треска 1,222 0,879 0,54 0,439 0,525 1,551 0,929 0,488 0,651 0,708
10 Крупа рисовая 1,008 0,369 0,135 0,176 0,63 0,142 0,425 0,223 0,313 0,329
11 Крупа манная 0,364 0,258 0,186 0,158 0,263 0,32 0,386 0,103 0,399 0,245
12 Крупа гречневая 0,702 0,301 0,203 0,16 0,796 0,431 0,343 0,183 0,395 0,331
13 Крупа овсяная 0,672 0,302 0,137 0,234 0,453 0,384 0,384 0,198 0,363 0,308
14 Крупа пшенная 1,04 0,244 0,137 0,226 0,22 0,226 0,333 0,207 0,48 0,309
15 Крупа перловая 0,584 0,258 0,152 0,148 0,308 0,286 0,313 0,173 0,331 0,253
16 Горох 1,204 0,78 0,395 0,227 0,48 0,984 0,804 0,16 0,763 0,539
17 Мука пшеничная 0,567 0,29 0,096 0,149 0,149 0,12 0,387 0,108 0,322 0,219
18 Макаронные изделия 0,69 0,38 0,133 0,253 0,215 0,139 0,412 0,12 0,488 0,290
19 Хлеб ржаной 0,275 0,146 0,118 0,293 0,217 0,132 0,062 0,062 0,278 0,173
20 Хлеб пшеничный 0,55 0,25 0,106 0,162 0,264 0,103 0,286 0,088 0,33 0,212
21 Печенье 0,357 0,171 0,247 0,088 0,172 0,08 0,054 0,054 0,334 0,162

*Иусс — сравнительный индекс удельного содержания.

1 соответствует максимальному содержанию каждой аминокислоты по сравнению с другими продуктами в наборе

Компенсация незаменимых аминокислот

Несмотря на то, что самостоятельно организм не способен синтезировать незаменимые аминокислоты, их недостаток в некоторых случаях все же может быть частично компенсирован. Так например недостаток поступающего вместе с пищей незаменимого фенилаланина может быть частично замещен заменимым тирозином. Гомоцистеин вместе с необходимым количеством доноров метильных групп, снижает потребности в метионине,а глутаминовая кислота частично замещает аргинин. В то же время необходимо отметить, что недостаток хотя бы одной незаменимой аминокислоты, приводит к неполному усвоению и других аминокислот. В таких условиях развитие организмов напрямую зависит от того незаменимого вещества, недостаток которого ощущается наиболее остро (закон минимума Либиха). Так же необходимо помнить, что для разных видов организмов список незаменимых аминокислот в некоторых случаях различен.

L-валин

Валин – незаменимая аминокислота, оказывающая стимулирующее действие. Валин необходим для метаболизма в мышцах, восстановления поврежденных тканей и для поддержания нормального обмена азота в организме. Относится к разветвленным аминокислотам, и это означает, что он может быть использован мышцами в качестве источника энергии. Валин часто используют для коррекции выраженных дефицитов аминокислот, возникших в результате привыкания к лекарствам.

Чрезмерно высокий уровень валина может привести к таким симптомам, как парестезии (ощущение мурашек на коже), вплоть до галлюцинаций.

Валин содержится в следующих пищевых продуктах: зерновые, мясо, грибы, молочные продукты, арахис, соевый белок. Прием валина в виде пищевых добавок следует сбалансировать с приемом других разветвленных аминокислот – L-лейцина и L-изолейцина.

Симптомы недостаточности валина неизвестны.

При избыточном приеме валин просто преобразуется в другие аминокислоты, поэтому он в общем считается безопасным.

Людям, страдающим заболеваниями почек и печени, необходимо проконсультироваться со своим врачом перед началом приема валина. Может снижать эффективность действия лекарств от болезни Паркинсона.

Литература:
Майкл Рисман Биологически активные пищевые добавки. Неизвестное об известном;
Клатц Голдман Победить время.

Входит в состав следующих препаратов:

Валин в организме человека — Справочник химика 21

    В состав природных белков обычно входят следующие аминокислоты аланин, аргинин, аспарагин, аспарагиновая кислота, цистеин, глицин, глутаминовая кислота, гистидин, глутамин, изолейцин, лейцин, лизин, метионин, оксипролин, пролин, серии, тирозин, треонин, триптофан и валин. Восемь аминокислот организм животных не может синтезировать, поэтому их называют биологически незаменимыми аминокислотами. К ним относятся фенилаланин, изолейцин, лейцин, лизин, метионин, треонин, триптофан и валин. Эти аминокислоты должны регулярно и в нужном количестве поступать в организм вместе с пищевыми продуктами. Недостаток одной из этих аминокислот в пище может стать фактором, лимитирующим рост и развитие организма. В табл. 15 показано химическое строение незаменимых аминокислот и рекомендуемое для человека количество их в сутки. [c.155]
    Необходимость их для животных и человека объясняется тем, что в животных организмах не могут синтезироваться соответствующие кетокислоты с разветвленной цепью. У растений же эти кетокислоты образуются довольно легко. Если при кормлении животных вместо валина, лейцина и изолейцина в рацион вводить соответственно а-кетоизовалериановую, а-кето-изокапроновую и а-кето-р-метилвалериановую кислоты, то организм полностью или почти полностью удовлетворяет свою потребность в незаменимых аминокислотах. Схемы реакций переаминирования, приводящие к образованию валина, лейцина и изолейцина, показаны ниже. Они являются общими как для растений, так и для животных  [c.254]

    Не синтезируются в организме человека, поступают с пищей. К ним относятся валин, лизин, фенилаланин. [c.642]

    Несмотря на то что в состав белков человеческого организма и вхог дят все аминокислоты, перечисленные в табл. 14.1, однако отнюдь не все они должны обязательно содержаться в пище. Экспериментально доказано, что для человека существенное значение имеют девять аминокислот. Такими незаменимыми аминокислотами являются гистидин, изолейцин, лейцин, лизин, метионин, фенилаланин, треонин, триптофан и валин. Все остальные аминокислоты, которые называют зал1еныл1ьши аминокислотами, человеческий организм способен вырабатывать сам. Минимальные количества аминокислот, необходимые человеку в молодости, были установлены американским биохимиком У. Ч. Роузом. Ерли ежесуточное поступление в организм человека любой из восьми указанных аминокислот (за исключением гистидина) окажется ниже определенного уровня, то организм человека будет выделять больше соединений азота, нежели получать их с пищей белки в его организме станут распадаться быстрее, чем синтезироваться. Потребность молодых людей в аминокислотах колеблется в пределах двукратной дозы, например 0,4—0,8 г лизина в сутки. Минимальная потребность по Роузу представляет собой наибольшую величину для любого из наблюдаемых им лиц. Нет сомнений в том, что каждый человек отличается от другого своими генетическими особенностями, а следовательно, и своими биохимическими характеристиками. Данные, приведенные в табл. 14.2, вдвое превышают значения, установленные Роузом. Предположительно эти количества вполне достаточны для предотвращения нарушений белкового обмена для большинства людей (99%). Потребности женщин составляют приблизительно две трети от количеств, указанных для мужчин. [c.389]


    Для жизнедеятельности организма человека н животных необходимы белки, жиры и углеводы, являющиеся пластическими и энергетическими материалами, а также минеральные соли н витамины. Среди жиров и продуктов гидролиза белков имеются незаменимые органические вещества, поступление которых должно обеспечиваться с пищей, так как они не синтезируются организмом. По-видимому, по мере эволюционного развития животного мира отдельные виды постепенно теряли способность к биосинтезу некоторых простых органических соединений, участвующих в метаболических процессах, так как более эффективным для организма путем они могли получить их из окружающей органической природы — растений и микроорганизмов или с животной пищей. К таким органическим соединениям относятся незаменимые -аминокислоты, незаменимые ненасыщенные жирные кислоты, а также витамины (термин витамины предложен Функом [2]). На необходимость для питания таких факторов ( витаминов ), не синтезируемых животными, указывал Лунин [3]. Для человека незаменимыми оказались восемь -аминокислот (из 20) валин, лейцин, изолейцин, лизин, треонин, метионин, фенилаланин триптофан [4]. Для животных незаменимых аминокислот значительно больше, например для крысы —11. [c.5]

    Как указывалось ранее, незаменимые аминокислоты не синтезируются в организме человека и животных, их необходимо включать в состав пищи для обеспечения оптимального роста и для поддержания азотистого баланса. Для человека являются незаменимыми следующие аминокислоты лейцин, изолейцин, валин, лизин, метионин, фенилаланин, триптофан, треонин, гистидин и аргинин. Восемь из перечисленных аминокислот оказались незаменимыми для многих изученных видов высших животных. Что же касается гистидина и аргинина, то эти аминокислоты могут синтезироваться в организме, но в количестве, не обеспечивающем оптимального роста и развития. Иначе обстоит дело со всеми остальными незаменимыми аминокислотами, так как организм совершенно утратил в ходе эволюции способность синтезировать их углеродные цепи, т. е. незаменимым у незаменимых аминокислот является их углеродный скелет. Высшие растения и большинство микроорганизмов способны к активному синтезу этих аминокислот. Пути их биосинтеза у различных видов организмов идентичны или близки и гораздо сложнее, чем пути образования заменимых аминокислот. Во многих из этих реакций участвуют такие посредники, как тетрагидрофолиевая кислота (ТГФ), переносчик одноуглеродных фрагментов (—СН3, — Hj, —СНО, — HNH, —СН=) и 5-адено-зилметионин — главный донор метильных групп в реакциях трансметилирования.[c.402]

    Аминокислоты, которые не синтезируются в результате биохимических превращений в организме (и поэтому организм получает их исключительно с пищей), называются незаменимыми аминокислотами. Для человека это валин, лейцин, изолейцин, лизин, метионин, треонин, фенилаланин и триптофан. [c.187]

    Хотя в состав белков человеческого организма и входят все аминокислоты, перечисленные в табл. 24.1, однако отнюдь не все они должны содержаться в пище. Экспериментально доказано, что для человека существенное значение имеют девять аминокислот. Такими незаменимыми аминокислотами являются гистидин, лизин, триптофан, фенилаланин, лейцин, изолейцин, треонин, метионин и валин. Человеческий организм, по-видимому, способен вырабатывать все остальные аминокислоты, которые называются необязательными аминокислотами. Некоторые организмы, обычно считающиеся более простыми, чем человек, значительно эффективнее вырабатывают все перечисленные аминокислоты из неорганических исходных веществ. Такой способностью обладает, например, красная хлебная плесень. В процессе эволюционного развития организмы утрачивают способность производить (с помощью ферментов) жизненно важные вещества, которые могут поступать в организм вместе с пищей. [c.677]

    Аминокислоты подразделяют на природные (обнаруженные в живых организмах) и синтетические. Среди природных аминокислот (около 150) выделяют протеиногенные (20 аминокислот), которые входят в состав белков. Все протеиногенные аминокислоты представляют собой -формы. Из них восемь являются незаменимыми, они синтезируются только растениями и не синтезируются в организме человека, поэтому их получают с пищей. К ним относятся валин, лейцин, изолейцин, треонин, метионин, лизин, фенилаланин, триптофан, иногда в их число включают гистидин и аргинин, которые не синтезируются в организме ребенка. [c.10]

    Следует отметить, что организм человека обладает способностью синтезировать только некоторые из нужных ему аминокислот. Имеется ряд аминокислот (они получили название незаменимых), которые организм построить не может и должен получать с пищей. К ним относятся лизин, лейцин, изолейцин, метионин, фенилаланин, триптофан, треонин, валин. [c.186]

    В отличие ох углеводов первичная структура белков строго специфична для каждого вида организмов. Так, гормон инсулин, построенный из 51 остатка а-аминокислот в виде двух цепей, соединенных дисульфидными мостиками, имеет неодинаковый состав у различных видов животных. Трехчленные звенья в определенном месте цепи А молекулы инсулина содержат следующие аминокислотные остатки у быка аланин—серир—валин у свиньи треонин—серин—изолейцин у лошади треонин—глицин—изолейцин у овцы аланин—глицин—валин у человека треонин—серин—изолейцин (на схеме 9 они отмечены звездочками). Различия наблюдаются также в С-концевом остатке В-цепи в инсулине человека Это остаток треонина, а в инсулине быка — остаток аланина. [c.512]

    Организм человека ограничен в своих возможностях превращать одну аминокислоту в другую. Превращение происходит в печени с помощью процессов транс-аминирования. Посредством трансаминаз аминогруппы переносятся с одной молекулы на другую. В то же время существуют аминокислоты, синтез которых в организме невозможен, и они должны быть получены с пищей это так называемые незаменимые аминокислоты лейцин, изолейцин, лизин, метионин, фенилаланин, треонин, триптофан, валин (для роста детей незаменимой аминокислотой является также гистидин). Только при поступлении таких аминокислот возможно со-.хранить азотистое равновесие. [c.7]

    С белковой пищей человек получает восемь незаменимых аминокислот лейцин, изолейциН, лизин, фенилаланин, валин, триптофан, треонин и метионин. Незаменимыми их называют потому, что они не могут быть синтезированы самим организмом. Отсутствие этих аминокислот приводит к прекращению роста, потере в весе и в конечном счете к гибели живого организма. Белки в организме действуют как буферные соединения и способствуют образованию эмульсий жиров в крови и протоплазме.[c.293]

    Белки довольно резко различаются по аминокислотному составу, в том числе и по содержанию незаменимых аминокислот. Некоторые белки содержат все незаменимые аминокислоты в количестве, достаточном для организма человека и животных. Такие белки называются биологически полноценными. К ним относятся белки куриного яйца, молока, ряда органов животных. Однако многие белки, чаще всего растительного происхождения, не содержат или содержат в недостаточном количестве одну или несколько незаменимых аминокислот. Например, в белках зерновых злаков содержится недостаточное количество лизина и триптофана, в белках семян бобовых культур недостаточно метионина, в белках клубней картофеля мало валина и т. д. Эти белки называют неполноценными. Нетрудно рассчитать, что если в каком-либо белке одна из незаменимых аминокислот содержится в количестве в 2 раза меньшем, чем необходимо для удовлетворения потребностей [c.392]

    Растения и большинство микроорганизмов способны синтезировать все входящие в их состав аминокислоты из простых веществ — углекислоты, воды и минеральных солей, тогда как в организме человека и животных некоторые аминокислоты не могут синтезироваться и должны поступать в организм в готовом виде как компоненты пищи. Такие аминокислоты принято называть незаменимыми, к ним относятся валин, лейцин, изолейцин, лизин, метионин, треонин, триптофан, фенилаланин. Отсутствие в пище хотя бы одной незаменимой аминокислоты приводит к тяжелым заболеваниям человека, а недостаток их в кормах снижает продуктивность сельскохозяйственных животных. [c.256]

    В процессе пищеварения Б. подвергаются гидролизу до аминокислот, к-рые и всасываются в кровь. Пищ ценность Б. зависит от их аминокислотного состава, содержания в них т. наз. незаменимых аминокислот, не синтезирующихся в организмах (для человека незаменимы триптофан, лейцин, изолейцин, валин, треонин, лизин, метионин и фенилаланин). В питательном отношении растит. Б. менее ценны, [c.253]

    Все а-аминокислоты, входящие в состав белков, разделяются на заменимые и незаменимые. Аминокислоты, не синтезирующиеся в живом организме, получили название незаменимых аминокислот. Для человека и всех видов животных незаменимыми являются следующие девять аминокислот лизин, треонин, триптофан, метионин, гистидин, фенилаланин, лейцин, валин и изолейцин.[c.5]

    Белки являются наиболее ценным компонентом пищи. Они участвуют в важнейших функциях организма. Основное же значение белков заключается в их незаменимости другими пищевыми веществами. Белки пищи в организме человека расщепляются до аминокислот. Определенная часть аминокислот, в свою очередь, расщепляется до органических кетокислот, из которых в организме вновь синтезируются новые аминокислоты, а затем белки. Это так называемые заменимые аминокислоты. Однако 8 аминокислот, а именно изо лейцин, лейцин, лизин, метионин, фенилаланин, тригггофан, треонин и валин — не могут образовьшаться в организме взрослого человека из других аминокислот и поступают в организм только с пищей. Эти аминокислоты называются незаменимыми. При недостатке незаменимых аминокислот задерживаются рост и развитие организма. [c.9]

    В 1902 г. английский врач А. Е. Гаррод (1857—1936) исследовал вольных, у которых моча темнела при стоянии на воздухе, и обнаружил, что изменение цвета вызвано присутствием в моче гомогентизино-вой кислоты, или 2,5-диоксифенилуксусной кислоты. Он описал это явление как врожденную ошибку обмена веществ . Позднее было установлено, что это результат генетической мутации фермент, который превращает гомогентизиновую кислоту в теле здорового человека в другие вещества, у больных или не синтезируется совсем или, возможно, синтезируется в измененной форме, не обладающей каталитической активностью. В 1949 г. была открыта причина другой генетической болезни— серповидноклеточной анемии, которая обусловлена присутствием в организме мутантного гена, детерминирующего синтез аномальной полипептидной цепи гемоглобина. В -цепи молекулы гемоглобина у больных серповидноклеточной анемией происходит замена одного аминокислотного остатка глутаминовой кислоты на валин, что уже было описано в разд. 15.6. Поскольку появление аномальных молекул гемоглобина влечет за собой болезнь, серповидноклеточная анемия была названа молекулярной болезнью. С 1949 г. обнаружены сотни молекулярных болезней. Для многих из них установлена природа генной мутации и соответствующее изменение в структуре молекулы белка, зависимого от мутировавшего гена. Для ряда таких болезней обнаружение нарушения на молекулярном уровне позволило практически полностью объяснить симптомы заболевания. [c.467]

    Хотя название азота означает не поддерживающий жизни , па самом деле это необходимый для жизнедеятельности элемент. В растительных организмах его содержится в среднем 3%, в живых организмах до 10% от сухого веса. Азот накапливается в почвах (в среднем 0,2 вес.%). В белке животных и человека среднее содержание азота составляет 16%. Человек и животные не могут синтезировать 8 незаменимых аминокислот (валин, изолейцин, лейцин, фенилаланин, триптофан, метионин, треонин, лизин), и поэтому для них основным источником этих аминокислот являются белки растений и микроорганизмов. [c.8]

    Известно, что в природные белки входит 20 аминокислот, из которых восемь не могут синтезироваться в организме животных. К незаменимым аминокислотам относятся фенилаланин, изо лейцин, лейцин, лизин, метионин, треонин, триптофан и валин. Недостаток даже одной из незаменимых аминокислот в пище человека и в кормах сельскохозяйственных животных может привести к серьезному нарушению обмена веществ в организме, к замедлению его роста и развития. [c.359]

    Применение. Наибольший практич. интерес представляют алифатич. аминокарбоновые к-ты, являющиеся основой синтетич. и природных полиамидов (белков, полипептидов). а-А. используют для получения синтетич. полипептидов. L-a-A., и в особенности те, к-рые не синтезируются в организме человека и наз. незаменимыми А. (валин, лейцин, пзолейцин, фенилаланин, треонин, метионин, лизин, триптофан), широко применяют в медицинской практике. ш-А. п их лактамы служат для промышленного синтеза полиамидов. Ароматич. А. используют в синтезе красителей и лекарственных препаратов. На основе ампиокарбоновых п амипофосфоповых к-т синтезируют селективные комплексообразующие иоиообменники. [c.55]

    Другой метод оценки качества белков основан на изучении их аминокислотного состава. Зеленые растения могут синтезировать все аминокислоты, тогда как организм человека и животного лишен этой способности. Аминокислоты, которые не могут синтезироваться в животном организме, получили название незаменимых . В настоящее время установлено, что для человека незаменимыми являются по крайней мере 8 аминокислот триптофан, фенилаланин, метионин, лизин, валин, треонин, изолейцин, лейцин и 2 полузаменимых — аргинин и гистидин. Питание белком, не содержащим какой-либо из этих аминокислот, приводит к нарушениям обмена веществ й заболеваниям организма. Таким образом, лишь установив аминокислотный и фракционный состав белков, можно говорить о пищевой ценности продукта. [c.45]

    Состояние белкового обмена целостного организма зависит не только от количества принимаемого с пищей белка, но и от качественного состава его. В опытах на животных было показано, что получение одинакового количества разных пищевьгх белков сопровождается в ряде случаев развитием отрицательного азотистого баланса. Так, скармливание равного количества казеина и желатина крысам приводило к положительному азотистому балансу в первом случае и к отрицательному—во втором . Имел значение различный аминокислотный состав белков, что послужило основанием для предположения о существовании в природе якобы неполноценных белков. Оказалось, что из 20 аминокислот в желатине почти отсутствуют (или содержатся в малых количествах) валин, тирозин, метионин и цистеин кроме того, желатин характеризуется другим, отличным от казеина процентным содержанием отдельных аминокислот. Этим можно объяснить тот факт, что замена в питании крыс казеина на желатин приводит к развитию отрицательного азотистого баланса. Приведенные данные свидетельствуют о том, что различные белки обладают неодинаковой пищевой ценностью. Поэтому для удовлетворения пластических потребностей организма требуются достаточные количества разных белков пищи. По-видимому, справедливо положение, что, чем ближе аминокислотный состав принимаемого пищевого белка к аминокислотному составу белков тела, тем выше его биологическая ценность. Следует, однако, отметить, что степень усвоения пищевого белка зависит также от эффективности его распада под влиянием ферментов желудочно-кишечного тракта. Ряд белковых веществ (например, белки шерсти, волос, перьев и др.), несмотря на их близкий аминокислотный состав к белкам тела человека, почти не используются в качестве пищевого белка, поскольку они не гидролизуются протеиназами кишечника человека и большинства животных. [c.413]

    Для животного организма витамин Вс является важнейшим витамином, входящим в состав ферментов, катализирующих белковый обмен он выполняет важную функцию в превращениях аминокислот. Для каждого животного организма необходимо получать с пищей некоторые аминокислоты (например, для человека незаменимы валин, лейцин, нзолейшш, лизин, треонин, метионин, фенилаланин, триптофан), которые он не в состоянии синтезировать все же другие необходимые аминокислоты синтезируются организмом нз продуктов расщепления белков или из а-кетокислот. [c. 355]

    Аминокислоты, необходимые для функционирования живого организма, поступают готовыми с пищей или синтезируются самим организмом из компонентов, поступающих с пищей Первые называют незаменимьши аминокислотами Для человека незаменимыми аминокислотами являются валин изолейцин лейцин лизин метионин фенилаланин треонин триптофан [c.863]

    Работы по биохимической переработке парафинов были начаты с 1957 г. во Франции. В этих работах было показано, что многие виды микробов живут и активно размножаются в смесях углеводородов в различных условиях в ловушках нефтеперерабатывающих заводов, в резервуарном отстое, в битумных покрытиНх дорог и пр. Были подобраны необходимые культуры бактерий, изучены их параметры роста и найдены оптимальные технические условия брожения углеводородных смесей. На 1 г парафиновых углеводородов получается около 1 г белковых веществ, содержащих все необходимые для питания человека и животных белки примерно с тем же содержанием И аминокислот (лейцин, валин, цистин, лизин, триптофан и др. ), которые необходимы для роста организма. [c.28]

    Гистидин, лизин, триптофан, фенилаланин, лейцин, изолейцин, треонин, метионин и валин считаются незаменимыми аминокислотами для человека. Что означает это утверждение Какое зна шние для человеческого организма имеют другие аминокислоты. Почему казеин является погсноценным, а желатина неполноценным белком  [c.501]

    Для осуществления белкового синтеза, так же как и для других синтетических процессов, о которых мы говорили выше, необходима энергия в форме АТФ. Цикл лимонной кислоты поставляет эту энергию. Кроме того, синтез белка требует запаса мономерных единиц (или их предшественников) — приблизительно двадцати видов природных аминокислот. Большинство В1дсших животных, включая человека и крысу, синтезируют в достаточном количестве лишь около половины этих аминокислот остальные аминокислоты — аргинин, гистидин, изолейцин, лейцин, лизин, метионин, фенилаланин, треонин, триптофан и валин — не могут быть синтезированы в самом организме они должны поступать с пищей и потому называются незаменимыми. Растения и большинство микроорганизмов, напротив, способны синтезировать все или почти все аминокислоты. Незаменимые аминокислоты помечены на фиг. 102 звездочкой. Предшественники для синтеза соединений обеих групп — заменимых аминокислот у животных и большей части аминокислот у других организмов — опять-таки поставляются циклом лимонной кислоты. [c.364]

    При одном из таких нарушений, например, организм начинает синтезировать гемоглобин, белок которого вместо глутаминовой кислоты содержит валин. Нарушение как будто незначительное, но боковая цепь аминокислоты — валина не имеет отрицательного заряда (в отличие от глутаминовой кислоты), и поэтому у гемоглобина, содержащего валин (его обозначают НЬЗ, а нормальный гемоглобин НЬА), распределение зарядов иное. Мы знаем, как влияют величины зарядов частиц белка на его растворимость. Действительно, при отщеплении кислорода от гемоглобина типа НЬ5 получается продукт менее растворимый, чем в случае НЬА. Пока кислорода достаточно, гемоглобин НЬ5 в большом количестве связан с кислородом и концентрация его свободной формы ( дезоксигенированного гемоглобина ) невелика. Но если человек, которого природа наделила этим дефектным гемоглобином, находится в условиях недостатка кислорода (например, в горах на большой высоте), то гемоглобин НЬ5 накапливается в эритроцитах и начинает выпадать в осадок. В результате эритроциты сморщиваются и принимают форму серпиков (отсюда название болезни, о которой мы уже упоминали в главе о белках,— серповидная анемия). Эритроциты неправильной формы с трудом проходят через капилляры, закупоривают их это может служить причиной многих болей, вести к легким инфарктам и отмиранию тканей. [c.181]

    Из перечисленных 22 аминокислот И необходимы для роста и развития животных и человека, не синтезируются в организме и должны вводиться с пищей (так называемые незаменимые аминокислоты). К ним относятся валин, лейцин, изолейцин, треонин, метионин, лизин, финилаланин, триптофан, аргинин, тирозин и гистидин. Правда, последние три аминокислоты не являются незаменимыми для некоторых животных на определенных этапах развития и роста. Однако первые восемь аминокислот абсолютно незаменимы. [c.49]

    В свободном виде в органах животных и растений обнаружено свыше 80 аминокислот. Однако в состав белковой молекулы обычно входит 22—23 аминокислоты, из них особенно необходимы так называемые незаменимые аминокислоты лейцин, фенилаланин, метионин, лизин, валин, изолейцин, треонин и триптофан. Эти аминокислоты не могут синтезироваться в животном и человеческом организме и должны быть доставлены человеку и животному в готовом виде с пищей. Незал енимые аминокислоты образуются только в растениях. Молекула белка представляет собой обычно одну длинную полипептидную цепь, состоящую из последовательно расположенных аминокислотных остатков, число которых может достигать нескольких сот единиц. [c.15]

    Потребность в отдельных аминокислотах у различных видов животных неодинакова. Так, собака может обходиться без аргинина [35], между тем как крыса нуждается и в гистидине, и в аргинине [32]. Любопытно, что потребность в некоторых аминокислотах у многих бактерий и плесеней более резко выражена, чем у человека и других позвоночных. В гл. П1 уже указывалось, что не только валин, лейцин, изолейцин и лизин, но и такие заменимые для организма высших животных аминокислоты, как глицин, пролин и глутаминовая кислота, могут быть определены микробиологическим методом, так как эти последние аминокислоты не могут быть синтезированы микробами, используемыми для их определения. Необходимо также отметить, что потребность в отдельных аминокислотах у некоторых грибов и плесеней, например у Neurospora rassa, может резко меняться под влиянием облучения или других воздействий [36]. [c.368]

    В главе 25 уже было дано определение незаменимых аминокислот — кислот, которые человек получает из пищи. Сам организм не может синтезировать эти кислоты или синтезирует их слишком медленно в количестве, недостаточном для построения гормонов, ферментов и других специфических молекул. Эти кислоты не способны к восстановительному аминированию или переаминирова-нию. Лизин и треонин, очевидно, необратимо дезаминируются. В молекулах валина, лейцина и изолейцина содержатся разветвленные цепи, в молекуле фенилаланина — бензольное кольцо, в молекуле триптофана — ядро индола. Такие разветвленные цепи и кольца необходимы организму, но не могут быть синтезированы в нем. Не происходит в животном организме и конденсации индола с аланином. [c.346]

    Что же такое ГПГ Напомним, что вся информация об организме — от бактерии до человека — хранится (точнее, кодируется) в его ДНК. Знаменитая двойная спираль молекулы ДНК состоит всего из 4 оснований А (аденин), Т (тимин), Г (гуанин) и Ц (цитозин). Две нити ДНК связаны углеводородными мостиками , соединяющими между собой (по принципу ключ — замок ) соответствующие друг другу по химическому строению концы оснований (А — Т и Г — Ц). Допустим, нить ДНК представлена последовательностью ТТТАТТГТТГЦТ. Разобьем ее на слова из трех букв ТТТ АТТ ГТТ ГЦТ — это и есть генетический код, в котором каждое слово (триплет, или кодон) кодирует определенную аминокислоту. Так, выбранная последовательность кодирует короткий пептид (небольшой белок) из четырех аминокислот фенилаланина, изолейцина, валина и аланина. Когда говорят об экспрессии генов (реализации в клетке закодированной в ДНК информации), подразумевают, что кодоны считываются специальными ферментами клетки с образованием промежуточной информационной молекулы и-РНК (этап транскрипции), считывание триплетов которой (этап трансляции) происходит в рибосомах с образованием белков. [c.81]


Аминокислота валин — что это такое, польза и вред для организма человека

Валин – незаменимая аминокислота с разветвленной цепью углеродных последовательностей. Одна из трех аминокислот с похожей структурной формулой. Ее собратьями являются лейцин и изолейцин. Все три аминокислоты входят в группу аминокислот с разветвленной цепью или ВСАА (БЦА) от английского Вranched-Сhain Аmino Аcids. Эти три аминокислоты – неразлучные друзья и употреблять их следует вместе, ибо они вместе выполняют свои функции в организме.

Прочитайте статью до конца и вы узнаете:

  1. какие функции в организме выполняет валин,
  2. почему валин необходим для наращивания мускулатуры,
  3. в каких продуктах питания содержится валин,
  4. суточная потребность в валине
  5. состояния, при которых увеличивается потребность в валине
  6. симптомы избыточного поступления валина

С вами Галина Батуро и аминокислота валин

Валин — незаменимая протеиногенная аминокислота с разветвленным алифатическим радикалом. Что значат эти страшные слова? Аминокислота — это класс органических, т.е. вырабатывающихся живыми организмами, соединений, в которых присутствует аминная голова Nh3 и карбоксильный хвост COOH, придающий соединению кислотные свойства. Подробнее о классах аминокислот читайте здесь: Строение аминокислот: структурные формулы и классификации.

Валин: структурная формула

Алифатический радикал — это углеводородная цепочка, присоединенная к той же углеродине, к какой присоединена аминная голова и карбоксильный хвост. Улеродный скелет валина на одну углеродину больше по сравнению с аланином, но ко второму атому углерода (в β-положении) прилепилась не одна углеродная последовательность, а две, т.е. аминокислота с одного конца как бы раздвоилась, за что и получила название аминокислота с разветвленной цепью.

Будучи протеиногенной аминокислотой, валин входит в состав белков организма.

Как и другие аминокислоты (кроме глицина), валин существует в двух оптических стереоизомерах: левом (L) и правом (D). В природных белках встречается только L-валин, D-валин образуется в результате химического синтеза и является балластной аминокислотой, нагружающей печень.

Метаболизм валина

Валин – это незаменимая аминокислота. Организм не синтезирует данное соединение, и оно должно поступать извне с продуктами питания.

Аминокислоты с разветвленной цепью (валин, лейцин, изолейцин) составляют около 45% от содержания всех незаменимых аминокислот в тканях. Разветвленные аминокислоты предупреждают распад белков в той же степени, как и введение полного набора аминокислот.

Попадая в желудочно-кишечный тракт, валин поступает в печень. В печени отсутствуют ферменты для метаболизма аминокислот с разветвленной цепью. Она задерживает другие аминокислоты для биохимических превращений, а разветвленным, в т.ч. валину дает зеленый свет для поступления в общий кровоток. В результате происходит разделение аминокислот пищевого белка, и в мышцы отправляется преимущественно смесь аминокислот с разветвленной цепью, все те же три друга – валин, лейцин, изолейцин. Именно там они вступают в реакции переноса аминогрупп, обеспечивая мышцы энергией.

Формирование фонда свободных аминокислот с разветвленной цепью в печени зависит от содержания таурина, который регулирует превращение аминокислот в глюкозу.

В мышцах разветвленные аминокислоты включаются в синтез мышечного белка, формируя резерв, из которого они могут быть мобилизованы во время физической нагрузки. Во время работы мышечный белок распадается, и разветвленные аминокислоты вступают в цепь биохимических превращений, конечным продуктом которых является глюкоза, обеспечивающая работу энергией. Надо сказать, что все время работы внутримышечный фонд свободных аминокислот остается постоянным, но после нагрузки он возрастает, т.е. существует определенная инерция биохимического конвейера.

Потребность в валине составляет 3 — 4 г. в сутки.

Минимальная суточная потребность для взрослого человека: 14 мг. на 1 кг. массы тела, для детей — 110 мг. на 1 кг. массы тела. Не следует ориентироваться на минимальную суточную потребность, она не физиологична, обеспечивая выживание, но не полноценную жизнь.

Аминокислоты

Аминокислоты – это структурные химические единицы, из которых состоят белки. В свою очередь, именно из белков и состоит любой без исключения живой организм (подробнее о белках можно узнать из статьи «Белок и его составляющие в продуктах питания»).

Важно!

Белки синтезируются в организме человека из аминокислот, образующихся в процессе расщепления белков, которые содержатся в пищевых продуктах. Вывод: именно аминокислоты представляют собой наиболее ценные элементы питания.

Существует порядка 28 аминокислот, которые могут быть заменимыми и незаменимыми. Заменимые синтезируются в печени человека, тогда как незаменимые в обязательном порядке должны поступать в организм извне, а именно с пищей.

Польза аминокислот

  • Регулирование функционирования головного мозга.
  • Улучшение усвоения витаминов и минералов.
  • Снабжение энергией мышечной ткани.
  • Ускорение синтеза белка путем стимулирования секреции гормона инсулина.
  • Способствование сжиганию жира.
  • Снижение аппетита.
  • Стимулирование иммунитета в борьбе с вирусами и инфекциями.
  • Улучшение метаболических процессов.
  • Активизирование выработки ферментов, способствующих поддержанию нормального психического тонуса.
  • Способствование выработке гемоглобина.
  • Увеличение физической выносливости.

Дефицит аминокислот

Важно!

Синтез белков осуществляется в организме постоянно. При отсутствии хотя бы одной незаменимой аминокислоты процесс образования белков приостанавливается, что может спровоцировать нарушение пищеварения, депрессию, развитие жировой дистрофии печени, а также замедление роста.

Основные причины дефицита незаменимых аминокислот:

  • неправильное питание;
  • инфекция;
  • употребление определенных лекарственных средств;
  • нарушение процесса всасывания в ЖКТ;
  • частое потребление фаст-фуда;
  • стрессы;
  • дисбаланс питательных веществ;
  • травмы.

Важно!

Особенно опасна нехватка аминокислот в детском возрасте, когда организму требуется полный набор биологически активных веществ, обеспечивающих нормальное физическое и умственное развитие.

Симптомы нехватки в организме аминокислот:

  • слабость;
  • снижение аппетита;
  • анемия;
  • истощение организма;
  • ухудшение состояния кожи.

Вред аминокислот

Навредить организму может не только дефицит, а и переизбыток аминокислот.

Так, самым безобидным проявлением переизбытка аминокислот является пищевое отравление со всеми вытекающими отсюда последствиями (речь идет о тошноте, поносе, рвоте, слабости). Кроме того, чрезмерное потребление аминокислот может спровоцировать нарушения в работе ЖКТ, сердечно-сосудистой и нервной систем.

В каких продуктах содержатся аминокислоты?

Важно!

Аминокислоты, получаемые из натуральных продуктов питания, не обладают побочными эффектами, чего нельзя сказать о синтетических биодобавках, передозировка которыми может привести к вышеперечисленным нарушениям.

Аминокислоты содержатся в таких продуктах:

  • грибы;
  • мясо;
  • зерновые;
  • молочные продукты;
  • орехи;
  • соя;
  • рыба;
  • бобовые;
  • крупы;
  • яйца;
  • бананы;
  • кунжут;
  • финики.

Ниже более подробно рассмотрим свойства отдельных аминокислот и их содержание в продуктах.

Структурная функция валина

Валин входит в состав практически всех белков, придавая им гидрофобные свойства, т. е. белок отталкивает от себя воду, повисая в водной среде автономной капелькой-глобулей. Особенно много данной аминокислоты в альбумине, казеине, белках соединительной ткани, накапливается он и в мышцах. Содержание валина в белке колеблется от 4,1% (мышечная ткань лошади) до 7-8% (сывороточный альбумин человека, казеин молока) и до 13-14% (эластин соединительной ткани).

Валин — один из главных компонентов в синтезе мышечных белков и тканей человеческого тела. Он необходим для роста и развития всех тканей, восстановления повреждений тканевых белков, поддержания нормального уровня азотистого обмена в организме. Валин в смеси с другими разветвленными аминокислотами используют для коррекции выраженных дефицитов аминокислот, возникших в результате привыкания к лекарствам, а также как парентеральное питание при уходе за тяжелыми больными.

Валин является предшественником витамина Б3 (пантотеновой кислоты).

Он защищает миелиновую оболочку – изолятор нервного волокна в головном и спинном мозге, разрушение которой вызывает неврологические заболевания, из которых самое грозное — рассеянный склероз.

Особые указания

При беременности и лактации

Во время беременности и лактации принимать добавки не рекомендуется.

Применение в детском возрасте

L-валин используется в клинической педиатрии, в частности, при организации парентерального питания. Основными показаниями к его применению выступают дефицит массы тела у ребенка, быстрые темпы роста, вызывающие потребность в дополнительных питательных веществах. Вещество включают в рацион недоношенных детей.

При нарушениях функции почек

Людям с почечной недостаточностью следует принимать препарат с осторожностью. Дозировка устанавливается специалистом.

L-валин используется в клинической педиатрии, в частности, при организации парентерального питания.

При нарушениях функции печени

Людям с тяжелой печеночной недостаточностью принимать средства с аминокислотой запрещается.

Энергетическая функция валина

Валин – глюкогенная аминокислота, которая в процессе метаболизма превращается в сукцинилКоА, а затем включается в цикл Кребса, с выходом энергии для работы мышц. В превращении участвуют ферменты-дегидрогеназы, НАД, витамины В7 (биотин) и В12.

Вместе со своими разветвленными братьями – лейцином и изолейцином – он обеспечивает энергией работу мышц, за что полюбился бодибилгерам. При физической нагрузке аминокислоты с разветвленной цепью, и валин в частности, являются основным источником аминного азота в скелетной мышце. Значительная их часть высвобождается при распаде мышечных белков, что требует увеличение потребления данных аминокислот с пищей. Прием коммерческих препаратов аминокислот с разветвленной цепью в этих условиях является оправданным, т.к. он компенсирует нагрузочный распад мышечных белков.

Регуляторная функция валина

Валин участвует в регулировании работы гипофиза: железы головного мозга, настраивающей гормональный оркестр организма. Он стимулирует выработку гормона роста, который поддерживает синтез белка в противовес его распаду.

При алкоголизме и наркомании выявлены характерные нарушения баланса аминокислот, в т. ч. с разветвленной цепью, среди которых важная роль принадлежит валину. При эмоциональных нарушениях, связанных с зависимостями, клеткам головного мозга требуется больше энергии, которую они получают, утилизируя аминокислоты с разветвленной цепью, в частности, валин. Активизируется распад белков в зонах мозга, отвечающих на регуляцию эмоций и общий тонус организма, что приводит к нарушению функциональной активности этих зон и увеличению чувства подавленности и раздражительности.

Валин влияет на выработку гормона радости – серотонина. Дефицит валина провоцирует депрессию, и, наоборот, при балансе аминокислот настроение повышается, человек испытывает прилив бодрости и подъем общего жизненного тонуса, поэтому валин применяют для лечения депрессий. Валин и триптофан являются конкурентами за транспорт при преодолении гематоэнцефалического барьера. Избыток валина тормозит накопление триптофана в головном мозге и при передозировке может приводить к нарушению мозговых функций вплоть до галлюцинаций.

При алкогольной энцефалопатии (нарушении мозговой функции) из-за плохой работы печени, отравленной алкоголем, в крови повышается концентрация ароматических аминокислот (триптофан, фенилаланин) и уменьшается количество аминокислот с разветвленной цепью (валин, лейцин, изолейцин). В результате конкуренции за транспорт, переносящий аминокислоты через гематоэнцефалический барьер, концентрация валина в головном мозге уменьшается, а триптофана возрастает. Ни к чему хорошему это не приводит, ибо отсутствие разветвленных аминокислот лишает мозг энергии для выработки нейромедиаторов. Энергетически-дефицитный мозг погружается в депрессию и начинает работать через пень-колоду, что внешне выражается в ослаблении умственных параметров.

Аминокислоту валин используют для лечения наркотической и алкогольной зависимостей, ибо алкоголизм и наркомания приводит к выраженной аминокислотной недостаточности. Дополнительное потребление валина позволяет предотвратить срывы, продляет ремиссию.

Валин улучшает мышечную координацию, понижает чувствительность к боли. Он улучшает приспосабливаемость к жаре и холоду. Будучи глюкогенной аминокислотой, он подавляет аппетит, уменьшает тягу к сладкому через регуляцию уровня сахара в крови.

Основные функции и польза

Для взрослых

Аминокислота поддерживает организм взрослого человека, повышает выносливость, устойчивость к стрессам. Также она выполняет следующие функции:

  • повышает выработку серотонина — гормона радости и хорошего настроения;
  • выводит азот;
  • укрепляет иммунную систему;
  • улучшает состояние почек, печени;
  • снижает степень алкогольной и наркотической зависимости;
  • позволяет быстрее набрать мышечную массу;
  • улучшает мозговую деятельность;
  • уменьшает содержание кортизола;
  • способствует быстрому насыщению, благодаря чему может использоваться в лечении ожирения.

Для детей

Иммунитет у маленького ребенка формируется не сразу. В первые годы своей жизни его иммунная система нуждается в особой поддержке, которую может обеспечить аминокислота. Она способствует формированию мышечной мускулатуры, поддерживая растущий организм. Во время повышенных умственных нагрузок школьникам необходимо употреблять продукты и добавки, содержащие это вещество.

Источники валина

Наибольшее количество валина содержится в яйцах, сыре и других молочных продуктах, мясе, рыбе, особенно лососевых, кальмарах. Из растительных продуктов валин в пристойных концентрациях можно получить из орехов, особенно грецких, фисташек, красной фасоли, тыквенных и подсолнечных семечек, морской капусты.

В процессе приготовление содержание валина в продуктах изменяется: в мясе, курице, рыбе его становится больше при тушении или отваривании, чем в сыром продукте или после обжарки. В яйцах, напротив, при жарке количество валина увеличивается по сравнению с сырым или вареным продуктом.

Для хорошего усвоения валина необходимо присутствие других аминокислот с разветвленной цепью – лейцина и изолейцина в соотношении валин : лейцин : изолейцин = 1 : 1 : 2. В коммерческих препаратах этот баланс выдержан.

Отсутствие валина в пище делает ее неполноценной и приводит к отрицательному азотистому балансу, т.е. организм будет расщеплять собственные белки и выводить азот. Долго такое состояние продлиться не может, ибо приводит к истощению и смерти.

Валин хорошо сочетается с медленными углеводами (крупы, хлеб грубого помола) и полиненасыщенными жирными кислотами (рыбий жир, льняное масло).

Химические свойства

Валин – широко распространенная алифатическая альфа-аминокислота, является одной из 20 протеиногенных незаменимых аминокислот. Соединение впервые было выделено из казеина в 1901 году химиком Э. Фишером.

Химическая формула Валина: HO2CCH(Nh3)CH(Ch4)2, рацемическая формула Валина: C5h21NO2. Молекулярная масса соединения = 117,15 грамм на моль, плотность вещества – 1,230 грамм на мс3. Структурная формула Валина подробно рассмотрена в статье на Википедии. Средство имеет 2 пространственных изомера D и L. Синтезируют аминокислоту в виде бесцветных кристаллов. L-Валин хорошо растворяется в воде, водных растворах щелочей, плохо растворяется в органических растворах.

Синтезировать вещество можно действием Nh4 на альфа-бромизовалериановую кислоту. С 1982 года средство производят во всем мире, примерно по 150 тонн в год. В живом организме аминокислота является одним из главных компонентов, участвующих в процессах роста и синтеза живых тканей, повышает мышечную координацию и снижает чувствительность организма к боли и прочим неблагоприятным факторам окружающей среды. Основными источниками Валина являются: мясо курицы, лосося и говядина; коровье молоко, яйца, грецкие орехи; пшеничная и кукурузная мука; горох и неочищенный рис.

Валин в продуктах питания

Руководствуясь таблицей, можно подсчитать, сколько продукта необходимо съесть в сутки, чтобы получить необходимую для жизни аминокислоту.

Так, сына Пармезана достаточно всего 100 г, яиц придется скушать 2 штуки, а молока выпить чуть не 1,5 литра. Впрочем, можно обойтись 150 г. говядины, 140 г. индейки или свиной вырезки. Если вы вегетарианец, то вам придется слузгать стакан очищенных тыквенных семечек или скушать 400 г. отварной сои (что маловероятно) или больше полкило гороховой каши (что совсем невероятно), грецких орехов потребуется полкило, остальные продукты можно не считать, потому что съесть необходимое количество не в человеческих силах. Я ни к чему не призываю, я лишь показываю на примере, чем грозит вегетарианская диета.

Недостаток валина

Недостаток валина в организме может быть как абсолютным, при недостаточном поступлении аминокислоты с продуктами питания, так и относительным, когда увеличивается потребность в этой аминокислоте в связи с физиологическими или патологическими процессами в организме.

При вегетарианской диете очень трудно соблюдать белковый баланс: если бездумно налегать на одни овощи и фрукты, очень легко получить проблемы, связанные с недостатком аминокислот, в первую очередь незаменимых. Дефицит валина может возникнуть и при недостаточном всасывании его в желудочно-кишечном тракте в связи с заболеваниями органов пищеварения.

Потребность в валине увеличивается в связи со следующими состояниями:

  1. Спортивные тренировки, особенно связанные с выработкой силы и выносливости
  2. Стресс, как психологический, так и физиологический: травмы, ожоги, перенесенные операции, кровопотеря и др.
  3. Патологические зависимости: пристрастие к алкоголю, наркотикам, в т.ч. никотину, и просто тяга к сладкому и желание жрать все без разбору.
  4. Заболевания центральной нервной системы: рассеянный склероз, депрессия
  5. Острые инфекционные заболевания: ОРВИ, пневмонии и др.

Недостаток валина действует угнетающе на нервную систему. У людей, страдающих от дефицита этой аминокислоты, могут возникнуть быстрая утомляемость, раздражительность, депрессия. Люди, борющихся с алкогольной или наркотической зависимостью, при дефиците валина могут вернуться к пагубному пристрастию.

Применение валина

Валин применяется в качестве пищевой добавки в составе BCAA (аминокислоты с разветвленной цепью). Это смесь аминокислот валина, лейцина и изолейцина в физиологической пропорции 1 : 1 : 2. ВСАА выделяют энергию непосредственно в мышечных волокнах, выполняя функцию мышечного топлива. Они применяются:

  1. Для повышения результативности тренировок, особенно в бодибилдинге и тяжелой атлетике.
  2. Лечение депрессий, бессонницы, мигрени, восстановление положительного эмоционального фона, в комплексном лечении рассеянного склероза
  3. Лечение патологических зависимостей: табакокурения, алкоголизма, наркомании
  4. Контроль аппетита, устранение тяги к сладкому, контроль веса, увеличение обмена веществ для сжигания жира и наращивания мышечной массы
  5. В комплексном лечении шока, при ожогах, травмах, операциях, чрезмерной кровопотере
  6. Стимуляция иммунитета в период сезонного подъема простудных заболеваний

Валин рекомендуют применять в программах по наращиванию мышц. Прием БАДов, содержащих валин оказывает укрепляющее действие на мускулатуру и показан для восстановления мышечных волокон после интенсивных тренировок. Напряженная мышечная деятельность в ходе занятий пауэлифтингом, бодибилдингом и других силовых и скоростно-силовых видов спорта, влечет за собой разрушение части сократительных белков мышц (актина и миозина). В процессе восстановления валин восполняет мышечные структуры, и в этих условиях важно достаточное количества валина в организме. Поэтому для эффективного тренинга, наращивания мышечной массы следует регулярно принимать ВСАА в спортивном рационе. Это помогает наиболее полно использовать потенциал повышенного гормонального фона, возникающего в процессе тренировки, ускорить рост мышечной массы и силы.

Усвоение свободных аминокислот ВСАА не требует дополнительной энергии и не тормозит восстановление энергозапасов в мышечных клетках.

Избыток валина

Потребление валина в слишком высоких дозах не безразлично для организма, поэтому не следует превышать рекомендуемые суточные дозировки — более 4 г. В лучшем случае передоз проявляется в парестезиях: чувство онемение конечностей, ползания мурашек, возможны аллергические реакции, дерматиты, расстройство пищеварения, повышенная тревожность. Регулярные передозировки могут привести к сгущению крови, вызвать дисфункцию печени и почек, увеличить уровень аммиака в организме, что проявляется в тошноте и рвоте. При сильном избытке валина возникает озноб, учащенное сердцебиение, страхи вплоть до галлюцинаций.

О переизбытке и недостатке

Передозировка приводит к нарушениям функционирования нервной системы, онемению конечностей, расстройствам желудка, вызывает ощущение покалывания в руках и ногах. У человека может появиться озноб, из-за чрезмерного выделения аммиака появляются мурашки на коже. В этом случае ухудшается кровообращение, в крови появляются сгустки, нарушается работа пищеварительной системы, наибольшую нагрузку испытывают почки и печень. Прием повышенных доз препарата вызывает галлюцинации.

Дефицит аминокислоты может провоцировать наступление дегенеративных неврологических заболеваний. Недостаток этого вещества может возникать при недостаточном питании, диетах. Основные признаки нехватки вещества:

  • повышенное выпадение волос;
  • резкая потеря веса;
  • мигрень, нарушения сна, расстройства памяти;
  • депрессия, уныние;
  • снижение защитных сил организма;
  • дерматит, высыпания на коже;
  • лейкопения;
  • остановка роста;
  • гипоальбунемия;
  • мышечная слабость;
  • артрит;
  • ломкость ногтей и волос;
  • воспаление слизистой оболочки глаза.

Лейцин, изолейцин и валин

Аминокислоты с разветвлёнными боковыми цепями (англ. branched-chain amino acids, BCAA) — группа протеиногенных аминокислот, характеризующихся разветвлёнными строением алифатической боковой цепи. К таким аминокислотам относятся лейцин, изолейцин и валин. Эти аминокислоты являются незаменимыми, то есть не синтезируются в организме, и поступают исключительно с пищей.

  Среднее содержание ВСАА в белках пищи составляет 25 %. Лейцин, изолейцин и валин содержатся в мясе, птице, твороге, орехах, рыбе, яйцах, молоке, соевых белках, печеных бобах, цельной пшенице, коричневом рисе, миндале, бразильских орехах, семенах тыквы, нуте, кешью, чечевице и кукурузе.

В отличие от других аминокислот ВСАА катаболизируются не в печени, а в скелетных мышцах, сердце, других органах и тканях. Во время тренировок эти аминокислоты используются мышцами в качестве источников энергии и обеспечивают 10 % необходимой мышцам энергии. Лейцин также может помочь нарастить мышечную массу, стимулируя синтез белка в мышцах при нагрузке.

ВСАА составляют примерно 14-18 % аминокислот в белках скелетных мышц человека.

ВСАА часто включают в состав продуктов для спортивного питания в качестве одного из многих компонентов, также производятся биологически активные добавки к пище, содержащие лейцин, изолейцин и валин. Такие добавки нередко рекомендуются производителями людям, активно занимающимся спортом. Однако наилучшим источником данных аминокислот является все же рациональное и полноценное по содержанию белка питание. Если же вы все же хотите использовать какие-либо дополнительные источники, помимо пищи, обратите свое внимание на концентраты сывороточного белка (WPC), поскольку в них очень высокое содержание лейцина. Если вы хотите получить высококачественный продукт, не содержащий ГМО, пестицидов и гормонов, убедитесь, что сывороточный белок имеет органическую природу происхождения. Также сывороточный белок не должен подвергаться тепловой обработке, поскольку под воздействием высоких температур разрушается молекулярная структура сыворотки.

Не следует принимать лейцин в качестве монодобавки, так как его прием может привести к инсулинорезистентности и тяжелым гипергликемическим реакциям.

При использовании ВСАА в силовых тренировках они могут помочь нарастить мышечную массу и увеличить силу. Возможно, это происходит из-за потребления достаточного количества высокобелковой пищи. Нет необходимости применения ВСАА в случае соблюдения рациональной диеты с достаточным количеством белка, поскольку обычные пищевые продукты позволяют получить 10-20 г ВСАА в день. Безопасным уровнем потребления ВСАА считается до 20 г в день.

Повышение содержания белка в питании автоматически увеличивает потребление ВСАА.

Результаты нескольких краткосрочных исследований продолжительностью от 3 до 6 недель, в которых участвовали профессиональные спортсмены, показывают, что около 10–14 г  день дополнительных BCAA могут увеличить прирост мышечной массы и силы во время тренировок.

Проводятся и другие исследования, в которых выясняется возможность применения данных аминокислот для улучшения качества жизни при различных заболеваниях, таких как сахарный диабет, цирроз печени, тардивная дискенезия, анорексия и других.

ВСАА используются в лечении энцефалопатий печеночного происхождения, имеются сведения о повышении концентрации внимания при приеме ВАСС у детей с фенилкетонурией.

ВАСС безопасны при правильном применении. Однако известны и ряд побочных эффектов, таких как усталость, снижение координации.

Их следует использовать с осторожностью до или во время деятельности, связанной с необходимостью повышенной координации, например, вождения.

Также ВАСС могут вызывать тошноту, рвоту, диарею и вздутие живота. Редко, но вызывают повышение кровяного давления и головную боль.

Беременным и кормящим женщинам следует воздержаться от использования ВАСС, поскольку отсутствуют сведения о безопасности такого применения.

Не следует использовать данные аминокислоты при боковом амиотрофическом склерозе (БАС, болезнь Лу Герига), поскольку их употребление связывают с развитием легочной недостаточности у таких пациентов и повышением смертности.

Нельзя использовать ВАСС при болезни мочи кленового сиропа, поскольку это может привести к развитию судорог и тяжелой умственной и физической отсталости.

Идиопатическая гипогликемиия у детей также является противопоказанием для использования ВАСС, поскольку при таком состоянии лейцин снижает уровень сахара в крови (за счет стимулирования поджелудочной железы, которая начинает выделять инсулин).

Поскольку ВАСС могут влиять на уровень сахара в крови, необходимо отказаться от их применения минимум за 2 недели до предполагаемого хирургического вмешательства.

ВАСС нельзя применять вместе с такими лекарственными препаратами, как леводопа, противодиабетические средства.

Кортикостероиды, диазоксид, гормоны щитовидной железы снижают активность ВАСС.

Для любого человека, желающего получить наилучший эффект от   физических упражнений, рациональное питание и достаточное водопотребление играют важную роль. Людям, занимающимся спортом, требуется адекватное ежедневное количество калорий, жидкости, углеводов (от 3 до 10 г/кг веса), белка (1,2-2,0 г/кг веса), жира (от 20% до 35% от общего количества калорий), а также адекватные уровни витаминов и минералов.

Вы можете дополнительно принимать БАД к пище, содержащие аминокислоты с разветвленной цепью (лейцин, изолейцин и валин). В ряде источников рекомендуется принимать ВАСС до и после тренировок, другие исследователи называют лучшим временем для приема ВАСС ночные часы, перед сном. Прежде чем начать прием БАД к пище с BCAA необходимо проконсультироваться с врачом, чтобы не только узнать, какое количество данных аминокислот необходимо принимать, но и предотвратить развитие побочных эффектов.

И все же наилучшим выбором для получения ВАСС будет не прием БАД к пище или  концентратов сывороточного белка (WPC), а оптимизация своего ежедневного рациона, употребление в пищу достаточного количества белков, жиров, углеводов и микронутриентов, включая витамины и минералы.

Источники: http://www.whogis.com/ru/

Аминокислоты, без которых нам не жить

 

Аминокислоты называют «строительным материалом» при синтезе в организме человека целого ряда белков. И любой белок – это цепочка из аминокислот, которые в определённой последовательности соединены между собой. При отсутствии хотя бы одной аминокислоты происходит сбой.

Из двадцати известных аминокислот, восемь являются незаменимыми. То есть сам организм синтезировать их не может, поэтому должен получать их вместе с пищей. Если же он их не получает, то нарушается работа нервной системы, водно-солевой обмен и многие другие функции в организме.

К незаменимым кислотам относятся:

Валин, который с лейцином и изолейцином участвует в синтезе тканей тела и стимулирует их рост, все трое они служат источником энергии в мышечных клетках.

Валин отвечает за мышечную координацию, понижает чувствительность организма к жаре, холоду и боли, поддерживает уровень гормона «счастья» – серотонина.

Содержится: в мясе, грибах, бобовых, зерновых, арахисе и молочных продуктах.

Лейцин необходим для активизации умственной деятельности и хорошей памяти, он защищает мышечные волокна от повреждений, восстанавливает кожные покровы, мышцы и кости, стимулирует гормон роста и снижает уровень сахара в крови. Содержится в нежирном мясе, печени, рыбе, твороге, молоке, натуральном йогурте, кефире, гречихе, чечевице, овсе, неочищенном рисе, люцерне.

Изолейцин так же отвечает за уровень сахара в крови, обеспечивает энергией все к летки и повышает выносливость. Содержится: в мясе птицы, печени, рыбе, яйцах, бобовых, чечевице, во ржи, миндале, кешью, сое, семечках.

Лизин отвечает за работу мозга и ясное мышление до глубокой старости, поддерживает энергию и следит за здоровьем сердца, оказывает сопротивление вирусам, способствует усвоению кальция, восстанавливает ткани, формируя коллаген. Содержится в мясе птицы, рыбе, молочных продуктах, бобовых, кукурузе, орехах, семечках, какао, в горьком шоколаде.

Метионин снижает содержание холестерина и улучшает работу печени, препятствует развитию депрессии.

Содержится в рыбе, желтке яиц, бобовых, зелёном горошке, гречихе, капусте, моркови, в апельсинах, арбузах и дыне.

Треонин – препятствует ожирению печени, участвует жировом и белковом обмене, повышает иммунитет. Содержится: в яйцах, молочных продуктах, бобовых, орехах.

Триптофан нормализует психическое состояние, отвечает за нормальное функционирование мозга и замедляет общее старение организма. Кроме того снижает аппетит и способствует повышению выработки гормона роста. Содержится в мясе птицы, рыбе, молоке, твороге, бобовых, орехах, кунжуте, бананах, в винограде и таких сухофруктах, как курага, инжир, финики.

Фенилаланин снижает аппетит и повышает настроение, а так же отвечает за быстроту реакций и уменьшает чувствительность организма к боли. Содержится он в говядине, курином мясе, рыбе, яйцах, твороге, молоке, сметане.

Получается, что для того, чтобы обеспечить организм незаменимыми аминокислотами, нужно потратить не так уж много денег.

Бобовые, злаки, семечки, овощи стоят недорого, мясо птицы, молочные продукты, яйца тоже доступны, есть недорогие сорта рыбы. Дорогими можно назвать только шоколад, орехи и некоторые сухофрукты. Но и их в небольшом количестве можно себе позволить – те же финики и курагу в виде перекуса на работе вместо тоже недешёвых конфет.

Для того чтобы сохранить здоровье, врачи советуют не забывать о крестоцветных – всех видах капусты, о цитрусовых и листовых огородных травах. А так же об оливковом и подсолнечном масле.

Всё это вместе снизит риск развития сердечно-сосудистых заболеваний, инсультов, помешает образованию склеротических бляшек и развитию слабоумия в старости.

Новости Педиатрического университета

Ребёнок-веган  все «за» и «против»

 

Ребёнок-веган – распространенное явление XXI века. Веганством считается наиболее строгая форма вегетарианства. Она отличается тем, что затрагивает не только сферу питания. Людей, которые придерживаются веганского образа жизни только в еде, называют строгими вегетарианцами.

Сегодня, 1 ноября, в Международный веганский день мы поговорим о влиянии на детский организм именно рациона питания, исключающего продукты животного происхождения.

На актуальные вопросы отвечает доцент кафедры общей медицинской практики СПбГПМУ, врач-педиатр высшей категорий, врач-диетолог клиники СПбГПМУ, Анна Никитична Завьялова .

 

Какой вопрос становится самым важным, когда речь идёт о рационе питания вегана или вегетарианца?

Бывают вегетарианцы, которые не пьют молоко, не едят мясо и рыбу в том числе, то есть употребляют только продукты растительного происхождения – веганы. Наш с вами организм – это восполняемая система и мы все должны получать белок извне, причём белок животного происхождения с определённым набором незаменимых аминокислот. Не хотите есть мясо, яйца, пить молоко – тогда вы должны восполнить незаменимые аминокислоты другим путем. Для взрослого человека необходимы 8 незаменимых аминокислот: валин, изолейцин, лейцин, метионин, треонин, триптофан, фенилаланин, лизин. Остальные аминокислоты относят к заменимым, но некоторые из них  лишь условно, поскольку заменимая аминокислота может синтезироваться в организме только из незаменимой.

То есть веган не может просто отказаться от продуктов животного происхождения, в таком случае у него должен быть тщательно продуманный полный сбалансированный рацион питания, основанный на растительной пище?

Сбалансированный по аминокислотному составу рацион из растительных продуктов и дотации незаменимыми аминокислотами (фармакологически).

Насколько полезно такое замещение для детского организма?

Для ребёнка это не полезно, а даже вредно, потому что ребёнок растёт.   Потребность в белке у детей разного возраста отличается, но тенденция к более высокой потребности, чем у взрослого однозначна. Ребёнок, подросток растёт. Рост костей, мышц, внутренних органов, всех тканей, в том числе и нервной ткани, головного мозга идёт за счёт поступления извне «строительного материала», в том числе и белков, богатых незаменимыми аминокислотами.  В каждом организме есть быстрорастущие ткани – слизистые оболочки желудочно-кишечного тракта, дыхательной системы, кожа, кровь, иммунная система, и нам необходим определённый аминокислотный состав белка. Ребёнок растёт, соответственно потребность в белке у него намного выше. 

Белковая пища, которую мы едим, бывает 4-х категорий:

1-я категория – белки молока и яиц. Они усваиваются на 95-96%. Их аминокислотный состав сбалансированный. Если мы берём младенчество, грудное молоко матери – это стопроцентное усвоение. В нём содержится тот аминокислотный состав, который необходим для роста и развития ребёнка. 

Белки 2-й категории – мясо, рыба, соя. Усвоение их идёт на 86-90%. Аминограмму* этих белков организм умеет выправлять за счёт собственных белковых ресурсов. 

3-я категория белков (усвоение — 64-68%) – это белки растительного происхождения (крупы, овощи, бобовые). Аминокислотный состав этих белков бедный, истощен пул незаменимых аминокислот.

И 4-я категория – у неё нулевая ценность (гемоглобин, желатин) – они не усваиваются вообще – пищевые наполнители.

То есть если ребёнок — веган, то для поддержания должного количества белка в организме он должен есть почти в два раза больше растительной пищи?

Объём потребляемой пищи будет больше, всё верно, но и растительная пища не восполнит потребности организма в незаменимых аминокислотах.

Насколько это полезно для детского организма?

Ничего хорошего в этом нет. Что касается объёма  объём желудка у детей разного возраста разный и этот объём растёт, постепенно, с возрастом, но он не бесконечен, согласны?

Трудно не согласиться.

Плюс к этому, аминограмма растительного белка – бедная по большому количеству незаменимых аминокислот. Если у взрослого человека незаменимых аминокислот не много (порядка 8), то у детей незаменимых аминокислот в два раза больше. Для того, чтобы расти и развиваться, ребёнку нужен белок животного происхождения. Он может его получить в виде искусственного белка (например, питательной смеси), грудного молока до определённого возраста или из мяса, яиц и молочных продуктов.

 

Никто не исключал того, что есть не очень здоровые дети с аллергией на белок коровьего молока или яйца, значит, эти продукты заменяются на другие с расчётом белка на килограмм массы тела. Дети с хронической болезнью почек, особенно в стадии, когда выделительная способность почки снижается, требуют особой диеты. В зависимости от скорости клубочковой фильтрации* определяется, сколько нужно белка на килограмм массы тела есть этому ребёнку. В данном случае мясные продукты или продукты с высоким содержанием белка (яйца, рыба) исключаются из рациона, но при этом ребёнку обязательно дают заменители в виде незаменимых аминокислот.

Допустим, родители ребёнка ведут веганский образ жизни, но, тем не менее, с какого возраста предпочтительно ребёнку переходить на питание, исключающее продукты животного происхождения? 

Конечно желательно всё-таки после 18 лет. Потому что любому организму особенно в подростковый период интенсивного роста, необходим незаменимый белок. И потом, все, кто растил детей-подростков, особенно мальчиков-подростков, прекрасно знают, что именно в этот период потребность и желание есть мясо – очень высоки (незаменимые аминокислоты). 

Тогда вытекающий из этого вопрос — как исключение продуктов животного происхождения это сказывается на внешнем виде и организме ребёнка в целом (кожа, волосы, зубы, ногти)?

По-разному. Еще раз говорю, есть больные дети, которым мы такие продукты целенаправленно убираем, у них печень и почки не метаболизируют достаточное количество белка. А если это выбор родителей, и ребёнок здоров, последствия могут быть неблагоприятными для его роста и развития. Нельзя дать стопроцентную гарантию. Может пройти всё нормально, не у всех таких детей происходит задержка роста или веса. Необходимо, чтобы диетолог хорошо рассчитал питание и правильно подобрал заменители мяса, чтобы они усваивались, должен быть контроль за железом и уровнем белка в сыворотке крови. 

Спасибо за ответы на основные вопросы, касающиеся питания ребёнка-вегана и влияния диеты, исключающей животные белки, на детский организм.

*Аминокислоты (аминокарбо́новые кисло́ты; АМК) — органические соединения, в молекуле которых одновременно содержатся карбоксильные и аминные группы. Основные химические элементы аминокислот  это углерод (C), водород (H), кислород (O), и азот (N), хотя другие элементы также встречаются в радикале определенных аминокислот.

*Аминограмма  запись количественного содержания аминокислот в белке (в г на 16 г белкового азота).

*Скорость клубочковой фильтрации (СКФ) – это количество крови, фильтруемой каждую минуту через крошечные фильтры в почках, называемые клубочками.

Что такое валин и каковы его преимущества?

Аминокислоты — это органические соединения, действующие как строительные блоки белка — по сути, то же самое, что коллаген для организма, а аминокислоты — для белка. Когда мы говорим, что протеин коллагена BUBS Naturals помогает телу с такими функциями, как рост, развитие, заживление, энергия или общее восстановление, на самом деле всю тяжелую работу выполняют аминокислоты в коллагене. Фактически, аминокислоты помогают почти во всем, что делает организм, поэтому абсолютно необходимо получать необходимое количество из продуктов или добавок.

Существует 20 различных аминокислот, каждая из которых выполняет свою полезную функцию в организме. Девять из них являются незаменимыми аминокислотами, а это означает, что организм сам по себе не может их производить. Чтобы обеспечить правильное функционирование организма, эти незаменимые аминокислоты необходимо принимать либо с пищей, либо с добавками. Одна из этих незаменимых аминокислот — валин, главный защитник здоровья, который так хорошо выполняет свою работу, что вы, вероятно, никогда о нем не слышали.

Валин, прилив энергии в аминокислотной форме


Простите нас за то, что мы на секунду впали в науку:

Валин — одна из трех аминокислот с разветвленной цепью (BCAA), наряду с лейцином и изолейцином, сгруппированных вместе из-за уникальности их химических свойств среди аминокислот.Кроме того, валин является гидрофобной аминокислотой, что означает, что он не встречается в водной среде. Он скрывается внутри белков, обеспечивая трехмерную структуру валина.

И что? Что все это значит для вас?

Проще говоря, валин повышает уровень вашей энергии. Кроме того, валин повышает выносливость и стимулирует более быстрое восстановление и восстановление мышц, будь то тяжелая тренировка или длительная травма. Кроме того, валин снижает высокий уровень сахара в крови, повышает уровень гормонов роста (особенно у младенцев и детей) и успокаивает нервную систему.

Благодаря природе того, как валин функционирует в вашем организме, валин оказывает огромное влияние на ваше тело.

Валин особенно важен для спортсменов, бодибилдеров и тех, кто занимается интенсивными тренировками, из-за его способности восстанавливать и восстанавливать поврежденные мышцы. Мы говорим не только о разорванных или напряженных мышцах; валин активно помогает любой мышце после тренировки (хотя он помогает и с травмированными мышцами!). Валин работает в организме, обеспечивая силу и энергию, необходимые для омоложения истощенных мышц, поэтому завтра вы можете снова начать тренировку с более сильными и счастливыми мышцами и с таким же безболезненным энтузиазмом.Кроме того, валин помогает повысить выносливость. Теперь вы не только обнаружите, что у вас больше энергии; вы останетесь на этом уровне дольше.

Очевидно, что недостаток валина со временем может вызвать повреждение мышц и еще больше замедлить сроки восстановления мышц. Кроме того, если необходимое количество этой аминокислоты не попадает в организм, это может вызвать замедление когнитивных процессов и гиперактивную нервную систему.

К счастью для вас, существуют не только продукты, содержащие валин, но и добавки, позволяющие легко принимать необходимое количество валина для оптимальной работы мышц.

Валин и ваша еда


Поскольку валин содержится в белках, это означает, что многие продукты, богатые белками, также содержат валин. Вы можете найти высокое содержание валина в цельнозерновых продуктах, таких как киноа или коричневый рис; орехи, такие как миндаль, кешью и арахис; соя; рыбы; мясо, такое как курица, говядина и баранина; и грибы, чтобы назвать несколько.

Некоторые из этих ингредиентов, включая курицу или орехи, могут уже быть частью вашего ежедневного рациона. Другие, такие как грибы или киноа, могут быть новым дополнением к диете, нуждающейся в аминокислотах или белках.Однако, придерживаясь здоровой, хорошо сбалансированной диеты, вы обнаружите, что потребляете все аминокислоты, которые необходимы для сбалансированной диеты.

Валин и ваши добавки


Несмотря на то, что вы можете найти валин во многих популярных, богатых белком продуктах, это не значит, что вы не можете немного помочь своему организму и своей диете. Если вы посмотрите на протеин коллагена BUBS Naturals, вы обнаружите, что одно из его самых известных заявлений — восстановление мышц. Частично это связано с наличием валина в белке коллагена.Другая часть связана с пролином и лизином, которые также присутствуют в аминопрофиле BUBS Collagen Peptide. Три аминокислоты работают вместе, чтобы сбалансировать уровень азота в организме, восстановить эти больные мышцы в рекордно короткие сроки и укрепить сухожилия и связки.

Что это значит для вас? Это означает, что BUBS ‘Collagen Protein направит вас на путь к одним из лучших тренировок в вашей жизни (не то чтобы мы были предвзятыми или что-то в этом роде …).

Независимо от того, получаете ли вы валин из продуктов питания или из нашей добавки «Одна мерная ложка и дон» Vektor Strategiese, вы можете быть уверены в положительном влиянии не только валина, но и всех аминокислот на ваш организм и общее состояние здоровья. Стиль жизни.

Valine — обзор | Темы ScienceDirect

Аминокислоты с разветвленной цепью

Изолейцин, валин и лейцин не являются предшественниками других промежуточных соединений. Однако предпоследний промежуточный продукт валина, α-кетоизовалерат, также является предшественником пантотената и лейцина. Высокий уровень α-кетобутирата, который является промежуточным продуктом синтеза изолейцина, токсичен и считается тревожным сигналом. Белки обладают лишь ограниченной способностью различать структурно родственные гидрофобные аминокислоты с разветвленной цепью и промежуточные соединения, которые приводят к их синтезу.Биосинтетические пути используют эти свойства. Аминоацил-тРНК-синтетазы — единственные белки, которые могут различать аминокислоты с разветвленной цепью, а продуманные механизмы снижают частоту неправильной зарядки.

Синтез изолейцина начинается с дезаминирования треонина, в результате чего образуется α-кетобутират ( Рисунок 6, , верхняя линия). Пируват, в котором на один атом углерода меньше, является соответствующей α-кетокислотой для синтеза валина (, рис. 6, , средняя линия).Затем параллельные пути с общими ферментами превращают α-кетобутират и пируват в изолейцин и валин соответственно. Синтаза ацетогидроксикислот катализирует декарбоксилирование пирувата и перенос ацетальдегида в α-кетобутират или пируват. E . coli содержит три изофермента этого фермента, которые различаются субстратной специфичностью и чувствительностью к ингибиторам обратной связи. Изоцим I и II преимущественно синтезируют валин и изолейцин соответственно. Изофермент I важен для роста с плохим источником углерода, тогда как изоферменты II и III используются только для роста с глюкозой.Эта реакция создает точку разветвления на α-углероде. Следующий фермент восстанавливает кетон до спирта и переносит точку разветвления на β-углерод. Дегидратация и трансаминазозависимое аминирование приводят к образованию изолейцина и валина.

Лейцин на одну метиленовую группу больше, чем валин, и имеет точку разветвления на γ-углероде. Дополнительный углерод добавляется реакциями, аналогичными тем, которые катализируются тремя реакциями цикла лимонной кислоты, которые имеют чистый эффект добавления двухуглеродного звена (ацетата) с последующим декарбоксилированием (, рис. 6, , нижняя строка).Первым промежуточным продуктом синтеза лейцина является α-кетоизовалерат, который также является промежуточным продуктом синтеза валина. α-Кетоизовалерат ацетилируется ацетил-КоА, и продукт, α-изопропилмалат, превращается в β-изопропилмалат по реакции, аналогичной реакции аконитазы. Затем β-изопропилмалат декарбоксилируется, образуя α-кетоизокапроат, который приобретает азот путем трансаминирования с образованием лейцина.

Аллостерическая регуляция контролирует первую совершенную стадию для каждой аминокислоты, но аллостерическая регуляция усложняется из-за метаболических взаимосвязей и общих ферментов.Изолейцин ингибирует треониндезаминазу, которая является изолейцин-специфическим ферментом. Валин отменяет это торможение. Валин ингибирует изоферменты I и III синтазы ацетогидроксикислот. Это может привести к токсичности валина из-за невозможности синтеза изолейцина и токсического накопления α-кетобутирата. Чтобы предотвратить эту токсичность, некоторые кишечные эубактерии содержат нечувствительную к валину синтазу ацетогидроксикислот, изофермент II. E . coli лишен этого изофермента и, по-видимому, избегает токсичности валина из-за изофермента синтазы ацетогидроксикислоты, который предпочитает α-кетобутират пирувату.Основным аллостерическим контролем синтеза лейцина является ингибирование лейцином изопропилмалатсинтазы, которая катализирует первую коммитируемую стадию синтеза лейцина.

Несколько механизмов транскрипционно регулируют образование ферментов аминокислот с разветвленной цепью. Аттенуация контролирует экспрессию 11 из 15 генов — эффекторы показаны над путями на Рисунок 5 . Lrp индуцирует один изофермент синтазы ацетогидроксикислот и оперон leuABCD , который кодирует ферменты биосинтеза лейцина.В отличие от этих механизмов регуляции, IlvY активирует только один ген, ilvC , который определяет третий фермент синтеза изолейцина и второй фермент синтеза валина. IlvY связывает ацетогидроксикислоты, которые являются субстратами для IlvC. Последний уровень регуляции — активация ppGpp ( Рисунок 6, ).

Преимущества валина, продукты питания, дозировка, функции и многое другое