Белки жиры углеводы таблица по биологии: Органические вещества в составе клетки, биологические молекулы (Таблица)

Содержание

Органические вещества в составе клетки, биологические молекулы (Таблица)

Справочная таблица содержит органические вещества в составе клетки (или биологические молекулы), такие как углеводы, нуклеиновые кислоты  и нуклеотиды, липиды, аминокислоты и белки, витамины

Биологические молекулы — в основе их строения лежит способность атомов углерода образовывать ковалентные связи, обычно с атомами углерода, кислорода, водорода или азота. Молекулы могут иметь форму длинных цепей или же формировать различные кольцевые структуры.

Органические вещества клетки

Функции в клетках

Структура и свойства

Углеводы

—  являются основным источником энергии для организма

—  компонент соединительных тканей

—  защитная функция (слизь, гепарин)

—  запасные питательные вещества (полисахариды)

Эти органические вещества клетки обычно состоят только из С, Н и О

Эмпирическая формула — СnН2nОn

Для определения простейших углеводов (редуцирующих сахаров) обычно используется нагревание с реактивом Бенедикта

Многие углеводы растворимы в воде

Делятся на три основных класса: моносахариды, олигосахариды и полисахариды.

Нуклеиновые кислоты  и нуклеотиды

—  синтез белка

—  хранение наследственной информации клетки

—  запас и накопление энергии в клетках

Нуклеиновые кислоты — биополимеры, мономерами которых являются нуклеотиды.

Содержат С, Н, О, N и Р

Фосфатная группа дает КИСЛУЮ РЕАКЦИЮ

После гидролиза сахар пентоза дает позитивную РЕАКЦИЮ БЕНЕДИКТА

Липиды

—  источник энергии

—  компоненты клеточных мембран

—  защитная функция клеток

—  транспортная функция

—  роль запасных веществ

Липиды — это различные соединения, отличающихся своей гидрофобностью. Большая часть липидов это жиры.

Обычно не растворяются в воде, но растворимы в органических растворителях

Обычно состоят только из С, Н и О, при этом содержание О меньше, чем в углеводах

Определяют, как правило, с помощью физической реакции — эмульсионной пробы

Аминокислоты и белки

—  структурная функция

—  каталитическая (ферменты)

—  транспортная функция (гемоглобин)

—  защитная функция (антитела)

—  энергетическая функция

Аминокислоты —  это соединения, в составе которых есть карбоксильная группа и аминогруппа
(—NH

2).

Биологические молекулы белков состоят из С, Н, О, N и иногда S

Эти органические вещества обычно растворимы в воде

Белки дают положительную биуретовую реакцию

Коферменты

Основная функция —  энергетическая!

Коферменты — это молекулы не белковой природы, соединяются с белками (апоферментами) и играют роль активного центра.

Коферменты используются для переноса функциональных групп между ферментами, которые катализируют химические реакции.

К ним относят витамины, АТФ, Ацетил-КоА.

АТФ (аденозинтрифосфат) центральный кофермент, универсальный источник энергии клеток.

_______________

Источник информации:

1. Биология человека в диаграммах / В.Р. Пикеринг — 2003.

2. Общая биология / Левитин М. Г. — 2005.



Таблица калорийности продуктов

Таблицы содержания белков, жиров, углеводов
и энергетической ценности на 100 г продукта

Мука, крупа, хлеб

Продукт

(на 100 г продукта)

 

Белки

(г)

Жиры

(г)

Углеводы

(г)

Энергоценность

(ккал)

Крупа пшенная

11,50

3,30

67,20

348,00

Крупа рисовая

7,00

1,00

73,20

330,00

Крупа гречневая продел

12,60

3,26

63,50

329,00

Крупа «Геркулес»

11,00

6,20

49,24

305,00

Хлеб пшеничный формовой, 1 с.

7,63

0,86

50,15

239,06

Хлеб пшеничный, в.с.

7,59

0,81

50,15

238,00

Хлеб пшеничный зерновой

8,13

1,38

45,62

195,00

Хлеб ржаной формовой

6,62

1,20

41,82

181,00

Печенье сахарное

7,50

11,80

74,40

436,00

Макароны, в.с.

10,40

1,13

74,90

337,00

Булка сдобная

7,61

5,28

56,80

295,00

Мясо, птица

Продукт

(на 100 г продукта)

 

Белки

(г)

Жиры

(г)

Углеводы

 (г)

Энергоценность

(ккал)

Свинина жирная

11,70

33,30

0,00

491,00

Говядина,

18,50

16,00

0,00

218,00

Баранина,

15,60

16,30

0,00

209,00

Мясо кроликов

21,10

15,00

0,00

183,00

Печень говяжья

17,90

3,70

0,00

105,00

Легкое говяжье

15,20

4,70

0,00

103,00

Сердце говяжье

16,00

2,80

0,00

86,00

Колбаса любительская

17,30

39,00

0,00

420,00

Колбаса полукопченая

16,50

63,60

0,00

376,00

Сосиски молочные

11,00

22,80

1,60

266,00

Колбаса докторская

12,80

22,20

1,50

257,00

Свинина тушеная

14,90

32,20

0,00

349,00

Говядина тушеная

16,80

16,00

0,00

220,00

Куры, 1 кат.

18,20

18,40

0,70

241,00

Яйцо куриное

12,70

11,50

0,70

157,00

Рыба, морепродукты

 

Продукт

(на 100 г продукта)

 

Белки

(г)

Жиры

(г)

Углеводы

(г)

Энергоценность

(ккал)

Печень трески

4,20

65,70

1,20

613,00

Ставрида

18,50

4,50

0,00

114,00

Кальмар

18,00

4,20

0,00

110,00

Сардины в масле (консервы)

16,00

17,70

0,00

223,00

Камбала в томате (консервы)

12,60

5,40

6,30

125,00

Молочные продукты

Продукт

(на 100 г продукта)

 

Белки

(г)

Жиры

(г)

Углеводы

(г)

Энергоценность

(ккал)

Молоко сгущенное с сахаром

7,20

8,50

56,00

320,00

Молоко коровье

3,20

3,60

5,16

61,00

Сметана, 30% жирности

2,40

30,00

3,18

294,00

Творог жирный

14,00

18,00

2,85

232,00

Сливки, 20% жирности

2,80

20,00

4,50

206,00

Кефир

2,80

3,20

3,61

56,00

Сыр

23,50

30,50

0,00

379,00

Брынза

17,90

20,10

0,00

260,00

Масло бутербродное

2,50

61,50

1,70

566,00

Мороженое сливочное

3,30

10,00

20,18

179,00

Майонез

2,40

70,00

3,90

627,00

Овощи

Продукт

(на 100 г продукта)

 

Белки

(г)

Жиры

(г)

Углеводы

(г)

Энергоценность

(ккал)

Горох

20,50

2,04

64,01

298,00

Томатная паста

4,80

0,00

20,10

99,00

Томаты грунтовые

1,10

0,20

5,00

23,00

Картофель

2,00

0,40

18,10

80,00

Баклажаны

1,20

0,10

6,90

24,00

Капуста кольраби

2,80

0,00

11,70

42,00

Капуста цветная

2,50

0,30

5,40

30,00

Капуста белокочанная ранняя

1,80

0,20

6,80

27,00

Капуста квашеная

1,80

0,00

3,20

19,00

Лук репчатый

1,40

0,00

10,40

41,00

Лук зеленый

1,30

0,00

5,20

19,00

Чеснок

6,50

0,00

6,00

46,00

Морковь красная

1,30

0,10

9,30

34,00

Огурцы парниковые

0,70

0,10

2,70

11,00

Огурцы соленые

0,80

0,10

2,30

13,00

Перец сладкий красный

1,30

0,00

7,20

27,00

Редька

1,90

0,20

8,00

35,00

Репа

1,50

0,00

3,10

27,00

Редис

1,20

0,10

3,80

21,00

Салат

1,50

0,20

3,10

17,00

Свекла

1,50

0,10

12,80

42,00

Тыква

1,00

0,10

5,90

25,00

Шпинат

2,90

0,30

2,50

22,00

Фрукты

Продукт

(на 100 г продукта)

 

Белки

(г)

Жиры

(г)

Углеводы

(г)

Энергоценность

(ккал)

Изюм

1,80

0,00

66,00

262,00

Виноград

0,60

0,20

16,80

65,00

Груши

0,40

0,30

10,90

49,00

Яблоки

0,40

0,40

11,80

45,00

Апельсины

0,90

0,20

10,30

40,00

Грейпфруты

0,90

0,20

10,30

35,00

Другие продукты

Продукт

(на 100 г продукта)

 

Белки

(г)

Жиры

(г)

Углеводы

(г)

Энергоценность

(ккал)

Масло растительное

0,00

99,90

0,00

899,00

Фундук

16,10

66,90

9,90

707,00

Орехи грецкие

15,60

65,20

0,00

646,80

Сахар

0,00

0,00

99,80

379,00

Кофе в зернах

13,90

14,40

15,00

248,00

Чай

20,00

5,10

15,00

186,00

Варенье

0,40

0,00

73,70

281,00

Пюре яблочное

0,60

0,10

20,00

78,00

Компот

0,20

0,00

20,60

70,00

Сок виноградный

0,40

0,00

14,00

54,00

Сок яблочный

0,30

0,00

7,23

38,00

Сок томатный

1,00

0,00

3,70

19,00

3. Обмен органических соединений (белков, жиров и углеводов)

Белковый обмен

Белковый обмен — использование и преобразование аминокислот белков в организме человека.

В результате окисления \(1\) г белка происходит выделение \(17,2\) кДж (\(4,1\) ккал) энергии.

Но белки редко используются в организме для получения энергии, так как они нужны для выполнения более важных функций (основная функция — строительная). Организму человека нужны не белки пищи, сами по себе, а аминокислоты, из которых они состоят.

 

В процессе пищеварения белки пищи расщепляются под действием пищеварительных ферментов до аминокислот. Аминокислоты всасываются ворсинками тонкого кишечника и попадают в кровь, которая доставляет их к клеткам. В клетках из аминокислот синтезируются новые белки, свойственные организму человека.

 

 

Содержанием отдельных аминокислот в крови управляет печень. Распадаясь, аминокислоты образуют воду, углекислый газ и ядовитый аммиак. В клетках печени из образовавшегося аммиака синтезируется мочевина (которая затем выводится вместе с водой почками в составе мочи и частично кожей), а углекислый газ выдыхается через лёгкие.

 

 

Остатки аминокислот используются как энергетический материал (преобразуются в глюкозу, избыток которой превращается в гликоген).

Углеводный обмен

Углеводный обмен — совокупность процессов преобразования и использования углеводов.

Углеводы являются основным источником энергии в организме. При окислении \(1\) г углеводов (глюкозы) выделяется \(17,2\) кДж (\(4,1\) ккал) энергии.

 

Углеводы поступают в организм человека в виде различных соединений: крахмал, гликоген, сахароза или фруктоза и др. Все эти вещества распадаются в процессе пищеварения до глюкозы, которая всасывается стенками тонкого кишечника и попадает в кровь.

 

 

Глюкоза — это главное энергетическое вещество организма. Она необходима для работы всех органов. 

 

Основная часть глюкозы окисляется в клетках до углекислого газа и воды, которые удаляются с выдыхаемым воздухом или с мочой.

 

Часть глюкозы превращается в полисахарид гликоген и откладывается в печени (может откладываться до \(300\) г гликогена) и мышцах (гликоген является основным поставщиком энергии для мышечного сокращения).

 

Уровень глюкозы в крови постоянный (\(0,10\)–\(0,15\) %) и регулируется гормонами щитовидной железы, в том числе инсулином. При недостатке инсулина уровень глюкозы в крови повышается, что ведёт к тяжёлому заболеванию — сахарному диабету.

 

Инсулин также тормозит распад гликогена и способствует повышению его содержания в печени.

 

Другой гормон поджелудочной железы — глюкагон — способствует превращению гликогена в глюкозу, тем самым повышая её содержание в крови (т. е. оказывает действие, противоположное инсулину).

 

 

При большом количестве углеводов в пище их избыток превращается в жиры и откладывается в организме человека.

 

\(1\) г углеводов содержит значительно меньше энергии, чем \(1\) г жиров. Но зато углеводы можно окислить быстро и быстро получить энергию.

Обмен жиров

Обмен жиров — совокупность процессов преобразования и использования жиров (липидов).

 

При распаде \(1\) г жира выделяется \(38,9\) кДж (\(9,3\) ккал) энергии (в \(2\) раза больше, чем при расщеплении \(1\) г белков или углеводов).

 

Жиры являются соединениями, включающими в себя жирные кислоты и глицерин. Жирные кислоты под действием ферментов поджелудочной железы и тонкого кишечника, а также при участии желчи, всасываются в лимфу в ворсинках тонкого кишечника. Далее с током лимфы липиды попадают в кровоток, а затем в клетки. 

 

 

При окислении жиры превращаются в углекислый газ и воду и продукты обмена удаляются из организма.

 

 

В гуморальной регуляции уровня жиров участвуют железы внутренней секреции и их гормоны.

 

Значение жиров

  • Окисление жиров обеспечивает энергией работу внутренних органов.
  • Липиды являются структурными элементами клеточных мембран, входят в состав медиаторов, гормонов, образуют подкожные жировые отложения и сальники.
  • Откладываясь в запас в соединительнотканных оболочках, жиры препятствуют смещению и механическим повреждениям органов.
  • Подкожная жировая клетчатка плохо проводит тепло, что способствует сохранению постоянной температуры тела.

Ежедневно рекомендуется употреблять \(80\)–\(100\) г разных жиров. Лишний жир откладывается под кожей, в тканях некоторых органов (например печени), а также и на стенках кровеносных сосудов.

 

 

Если в организме недостаёт одних веществ, то они могут образовываться из других. Белки могут превращаться в жиры и углеводы, а некоторые углеводы — в жиры. В свою очередь жиры могут стать источником углеводов, а недостаток углеводов может пополняться за счёт жиров и белков. Но ни жиры, ни углеводы не могут превращаться в белки.

 

 

Установлено, что взрослый человек в сутки тратит не менее \(1500\)–\(1700\) ккал. Причём  на собственные нужды организма уходит \(15\)–\(35\) % полученной энергии, а остальное затрачивается на выработку тепла и поддержание температуры тела.

8. Органические вещества. Углеводы. Белки. Биология. Общая биология. 10 класс. Базовый уровень

8. Органические вещества. Углеводы. Белки

Вспомните!

Какие вещества называют биологическими полимерами?

Каково значение углеводов в природе?

Назовите известные вам белки. Какие функции они выполняют?

Углеводы (сахара). Это обширная группа природных органических соединений. В животных клетках углеводы составляют не более 5 % сухой массы, а в некоторых растительных (например, клуб ни картофеля) их содержание достигает 90 % сухого остатка. Углеводы подразделяют на три основных класса: моносахариды, дисахариды и полисахариды.

Моносахариды рибоза и дезоксирибоза входят в состав нуклеиновых кислот (рис. 15). Глюкоза присутствует в клетках всех организмов и является одним из основных источников энергии для животных. Широко распространена в природе фруктоза – фруктовый сахар, который значительно слаще других сахаров. Этот моносахарид придаёт сладкий вкус плодам растений и мёду.

Если в одной молекуле объединяются два моносахарида, такое соединение называют дисахаридом. Самый распространённый в природе дисахарид – сахароза, или тростниковый сахар, – состоит из глюкозы и фруктозы (рис. 16). Её получают из сахарного тростника или сахарной свёклы. Именно она и есть тот самый сахар, который мы покупаем в магазине.

Сложные углеводы – полисахариды, состоящие из простых сахаров, выполняют в организме несколько важных функций (рис. 17). Крахмал для растений и гликоген для животных и грибов являются резервом питательных веществ и энергии.

Рис. 15. Структурные формулы моносахаридов

Рис. 16. Структурная формула сахарозы (дисахарида)

Рис. 17. Строение полисахаридов

Крахмал запасается в растительных клетках в виде так называемых крахмальных зёрен. Больше всего его откладывается в клубнях картофеля и в семенах бобовых и злаков. Гликоген у позвоночных содержится главным образом в клетках печени и мышцах. Крахмал, гликоген и целлюлоза построены из молекул глюкозы.

Целлюлоза и хитин выполняют в организмах структурную и защитную функции. Целлюлоза, или клетчатка, образует стенки растительных клеток. По общей массе она занимает первое место на Земле среди всех органических соединений. По своему строению очень близок к целлюлозе хитин, который составляет основу наружного скелета членистоногих и входит в состав клеточной стенки грибов.

Белки (полипептиды). Одними из наиболее важных органических соединений в живой природе являются белки. В каждой живой клетке присутствует одновременно более тысячи видов белковых молекул. И у каждого белка своя особая, только ему свойственная функция. О первостепенной роли этих сложных веществ догадывались ещё в начале XX в., именно поэтому им дали название протеины (от греч. protos – первый). В различных клетках на долю белков приходится от 50 до 80 % сухой массы.

Строение белков. Длинные белковые цепи построены всего из 20 различных типов аминокислот, имеющих общий план строения, но отличающихся друг от друга по строению радикала (R) (рис. 18). Соединяясь, молекулы аминокислот образуют так называемые пептидные связи (рис. 19).

Рис. 18. Общая структурная формула аминокислот, входящих в состав белков

Рис. 19. Образование пептидной связи между двумя аминокислотами

Две полипептидные цепи, из которых состоит гормон поджелудочной железы – инсулин, содержат 21 и 30 аминокислотных остатков. Это одни из самых коротких «слов» в белковом «языке». Миоглобин – белок, связывающий кислород в мышечной ткани, состоит из 153 аминокислот. Белок коллаген, составляющий основу коллагеновых волокон соединительной ткани и обеспечивающий её прочность, состоит из трёх полипептидных цепей, каждая из которых содержит около 1000 аминокислотных остатков.

Последовательное расположение аминокислотных остатков, соединённых пептидными связями, является первичной структурой белка и представляет собой линейную молекулу (рис. 20). Закручиваясь в виде спирали, белковая нить приобретает более высокий уровень организации – вторичную структуру. И наконец, спираль полипептида сворачивается, образуя клубок (глобулу). Именно такая третичная структура белка и является его биологически активной формой, обладающей индивидуальной специфичностью. Однако для ряда белков третичная структура не является окончательной.

Может существовать четвертичная структура – объединение нескольких белковых глобул в единый рабочий комплекс. Так, например, сложная молекула гемоглобина состоит из четырёх полипептидов, и только в таком виде она может выполнять свою функцию.

Функции белков. Огромное разнообразие белковых молекул подразумевает столь же широкое разнообразие их функций (рис. 21, 22). Около 10 тыс. белков-ферментов служат катализаторами химических реакций. Они обеспечивают слаженную работу биохимического ансамбля клеток живых организмов, ускоряя во много раз скорость химических реакций.

Рис. 20. Строение белковой молекулы: А – первичная; Б – вторичная; В – третичная; Г – четвертичная структуры

Вторая по величине группа белков выполняет структурную и двигательную функции. Белки участвуют в образовании всех мембран и органоидов клетки. Коллаген входит в состав межклеточного вещества соединительной и костной ткани, а основным компонентом волос, рогов и перьев, ногтей и копыт является белок кератин. Сократительную функцию мышц обеспечивают актин и миозин.

Транспортные белки связывают и переносят различные вещества и внутри клетки, и по всему организму.

Белки-гормоны обеспечивают регуляторную функцию.

Например, соматотропный гормон, вырабатываемый гипофизом, регулирует общий обмен веществ и влияет на рост. Недостаток или избыток этого гормона в детском возрасте приводит соответственно к развитию карликовости или гигантизма.

Рис. 21. Основные группы белков

Чрезвычайно важна защитная функция белков. При попадании в организм человека чужеродных белков, вирусов или бактерий на защиту встают иммуноглобулины – защитные белки. Фибриноген и протромбин обеспечивают свёртываемость крови, предохраняя организм от кровопотери. Есть у белков и защитная функция несколько иного рода. Многие членистоногие, рыбы, змеи и другие животные выделяют токсины – сильные яды белковой природы. Белками являются и самые сильные микробные токсины, например ботулиновый, дифтерийный, холерный.

При нехватке пищи в организме животных начинается активный распад белков до конечных продуктов, и тем самым реализуется энергетическая функция этих полимеров. При полном расщеплении 1 г белка выделяется 17,6 кДж энергии.

Рис. 22. Синтезированные белки или остаются в клетке для внутриклеточного применения, или выводятся наружу для использования на уровне организма

Рис. 23. Денатурация белка

Денатурация и ренатурация белков. Денатурация – это утрата белковой молекулой своей структурной организации: четвертичной, третичной, вторичной, а при более жёстких условиях – и первичной структуры (рис. 23). В результате денатурации белок теряет способность выполнять свою функцию. Причинами денатурации могут быть высокая температура, ультрафиолетовое излучение, действие сильных кислот и щелочей, тяжёлых металлов и органических растворителей.

Дезинфицирующее свойство этилового спирта основано на его способности вызывать денатурацию бактериальных белков, что приводит к гибели микроорганизмов.

Денатурация может быть обратимой и необратимой, частичной и полной. Иногда, если воздействие денатурирующих факторов оказалось не слишком сильным и разрушение первичной структуры молекулы не произошло, при наступлении благоприятных условий денатурированный белок может вновь восстановить свою трёхмерную форму. Этот процесс называют ренатурацией, и он убедительно доказывает зависимость третичной структуры белка от последовательности аминокислотных остатков, т. е. от его первичной структуры.

Вопросы для повторения и задания

1. Какие химические соединения называют углеводами?

2. Что такое моно– и дисахариды? Приведите примеры.

3. Какой простой углевод служит мономером крахмала, гликогена, целлюлозы?

4. Из каких органических соединений состоят белки?

5. Как образуются вторичная и третичная структуры белка?

6. Назовите известные вам функции белков. Чем вы можете объяснить существующее многообразие функций белков?

7. Что такое денатурация белка? Что может явиться причиной денатурации?

Подумайте! Выполните!

1. Используя знания, полученные при изучении биологии растений, объясните, почему в растительных организмах углеводов значительно больше, чем в животных.

2. К каким заболеваниям может привести нарушение превращения углеводов в организме человека?

3. Известно, что, если в рационе отсутствует белок, даже несмотря на достаточную калорийность пищи, у животных останавливается рост, изменяется состав крови и возникают другие патологические явления. Какова причина подобных нарушений?

4. Объясните трудности, возникающие при пересадке органов, опираясь на знания специфичности белковых молекул в каждом организме.

5. Оцените содержание белков, жиров и углеводов в продуктах питания (на основании данных, представленных на этикетках).

Работа с компьютером

Обратитесь к электронному приложению. Изучите материал и выполните задания.

Узнайте больше

К настоящему времени выделено и изучено более тысячи ферментов, каждый из которых способен влиять на скорость той или иной биохимической реакции.

Молекулы одних ферментов состоят только из белков, другие включают белок и небелковое соединение, или кофермент. В качестве коферментов выступают различные вещества, как правило, витамины и неорганические – ионы различных металлов.

Как правило, ферменты строго специфичны, т. е. ускоряют только определённые реакции, хотя встречаются ферменты, которые катализируют несколько реакций. Такая избирательность действия ферментов связана с их строением. Активность фермента определяется не всей его молекулой, а определённым участком, который называют активным центром фермента. Форма и химическое строение активного центра таковы, что с ним могут связываться только определённые молекулы, которые подходят ферменту, как ключ замку. Вещество, с которым связывается фермент, называют субстратом. Иногда одна молекула фермента имеет несколько активных центров, что, естественно, ещё более ускоряет скорость катализируемого биохимического процесса.

На заключительном этапе химической реакции комплекс «фермент – субстрат» распадается на конечные продукты и свободный фермент. Освободившийся при этом активный центр фермента может снова принимать новые молекулы вещества-субстрата (рис. 24).

Рис. 24. Схема образования комплекса «фермент – субстрат»

Повторите и вспомните!

Человек

Обмен углеводов. В организм углеводы попадают в виде различных соединений: крахмал, гликоген, сахароза, фруктоза, глюкоза. Сложные углеводы начинают перевариваться уже в ротовой полости. В двенадцатиперстной кишке они расщепляются окончательно – до глюкозы и других простых углеводов. В тонком кишечнике простые углеводы всасываются в кровь и направляются в печень. Здесь избыток углеводов задерживается и превращается в гликоген, а оставшаяся часть глюкозы распределяется между всеми клетками тела. В организме глюкоза, прежде всего, является источником энергии. Расщепление 1 г глюкозы сопровождается выделением 17,6 кДж (4,2 ккал) энергии. Продукты распада углеводов (углекислый газ и вода) выводятся через лёгкие или с мочой. Главная роль в регуляции концентрации глюкозы в крови принадлежит гормонам поджелудочной железы и надпочечников.

Больше всего углеводов содержится в продуктах растительного происхождения. Обычно в пище человека встречаются такие углеводы, как крахмал, свекловичный сахар (сахароза) и фруктовый сахар. Особенно богаты крахмалом различные крупы, хлеб, картофель. Очень полезен фруктовый сахар, он легко усваивается организмом. Этого сахара много в мёде, фруктах и ягодах. Взрослому человеку необходимо получать с пищей не менее 150 г углеводов в сутки. При выполнении физически тяжёлых работ это количество необходимо увеличить в 1,5–2 раза. С точки зрения процессов обмена веществ введение в организм полисахаридов более рационально, чем моно– и дисахаридов. Действительно, относительно медленный распад крахмала в пищеварительной системе приводит к постепенному поступлению глюкозы в кровь. В случае же переедания сладкого концентрация глюкозы в крови растёт резко, скачкообразно, что негативно влияет на работу многих органов (в том числе поджелудочной железы).

Обмен белков. Попадая в организм, пищевые белки под действием ферментов расщепляются в желудочно-кишечном тракте до отдельных аминокислот и в таком виде всасываются в кровь. Главная функция этих аминокислот – пластическая, т. е. из них строятся все белки нашего организма. Реже белки используются как источники энергии: при распаде 1 г выделяется 17,6 кДж (4,2 ккал). Аминокислоты, входящие в состав белков нашего организма, подразделяют на заменимые и незаменимые. Заменимые аминокислоты могут синтезироваться в нашем организме из других аминокислот, поступающих с пищей. К ним относятся глицин, серин и другие. Однако многие необходимые нам аминокислоты не синтезируются в нашем организме и поэтому должны постоянно поступать в организм в составе белков пищи. Такие аминокислоты называют незаменимыми. Среди них, например, валин, метионин, лейцин, лизин и некоторые другие. В случае дефицита незаменимых аминокислот возникает состояние «белкового голодания», приводящее к замедлению роста организма, ухудшению процессов самовозобновления клеток и тканей. Пищевые белки, содержащие все необходимые человеку аминокислоты, называют полноценными. К ним относят животные и некоторые растительные белки (бобовых растений). Пищевые белки, в составе которых отсутствуют какие-либо незаменимые аминокислоты, называют неполноценными (например, белки кукурузы, ячменя, пшеницы).

Большинство продуктов питания содержит белок. Богаты белком мясо, рыба, сыр, творог, яйца, горох, орехи. Особенно важны животные белки молодому растущему организму. Недостаток полноценных белков в пище приводит к замедлению роста. В сутки человеку необходимо съедать с пищей 100–120 г белка.

Распадаясь, аминокислоты образуют воду, углекислый газ и ядовитый аммиак, который в печени превращается в мочевину. Конечные продукты обмена белков выводятся из организма с мочой, по?том и в составе выдыхаемого воздуха.

Данный текст является ознакомительным фрагментом.

Продолжение на ЛитРес

белки, жиры, углеводы, нуклеиновые кислоты»

8 класс

Тема: Органические вещества: белки, жиры, углеводы, нуклеиновые кислоты.

Задачи:

изучить особенности строения органических ве­ществ, выявить их роль в жизнедеятельности живых организмов.
образовательная: показать взаимосвязь строения и выполняемой функции на примере органических веществ, входящих в состав клетки; развивающая: формировать умения: выделять главное, анализировать, устанавливать причинно-следственную связь.

ХОД УРОКА

1. Орг момент

2. Проверка знаний учащихся

Макроэлементы, микроэлементы, биоэлементы

Устный опрос

  1. Какие вещества относятся к макроэлементам? (кислород, водород, азот, углерод)

  2. Какие вещества относятся к микроэлементам? (натрий, кальций, фосфор, калий, сера, железо и др.)

  3. Какова роль кальция в организме? (свертываемость крови, формирование костной ткани)

  4. Какова роль железа и магния? (перенос кислорода и участие в фотосинтезе соответственно)

  5. Назовите свойства воды (полярность, диполь, теплопроводность, теплоемкость)

  6. Приведите примеры солей, содержащихся в клетке …(катионы калия, натрия и кальция)

3. МОТИВАЦИЯ И СОВМЕСТНОЕ ЦЕЛЕПОЛАГАНИЕ УРОКА

Ребята, сегодня на уроке мы будем продолжать рассматривать химический состав клетки, изучим органические вещества, которые содержатся в клетке, их структуру, функции и взаимосвязь.

4. ИЗУЧЕНИЕ НОВОГО МАТЕРИАЛА

Ведущими органическими веществами, входящими в состав клетки, являются белки, углеводы, жиры, нуклеиновые кислоты (ДНК и РНК) и аденозинтрифосфорная кислота (АТФ).

БЕЛКИ — основная составная часть любой живой клетки. На их долю приходится половина сухого вещества клетки (после удаления из нее волы). Белки выполняют в ней чрезвычайно разнообразные функции, из которых самая важная — каталитическая функция. Любая химическая реакция в клетке протекает при участии особых биологических катализаторов — ферментов. А любой фермент — белок. Следовательно, без белков-ферментов клетка не смогла бы осуществить ни одной химической реакции, а значит не смогла бы ни расти, ни размножаться, ни функционировать. Где нет белка, там нет жизни. Именно это и заставило Ф. Энгельса определить жизнь как форму cуществования белковых тел — такую форму, которая реализуется через постоянный обмен веществ.

Помимо каталитической, очень важна структурная (строительная) функции белков. Белки входят в состав всех мембран, окружающих и пронизывающих клетку. В соединении с ДНК белок составляет тело хромосом, а в соединении с РНК — тело рибосом. Растворы низкомолекулярных белков входят в состав жидких фракций клетки. Наконец, именно с белками связано осуществление таких функций, как перенос кислорода в теле организма (его осуществляет белок крови — гемоглобин), сокращение мускулатуры, передача раздражения по нервам и целый ряд других, т.е. двигательную, транспортную и защитную (антитела) функции.

Всего известно 20 различных аминокислот, входящих в состав белков. Молекулы белков имеют 4 структуры: первичную, вторичную, третичную и четвертичную.

УГЛЕВОДЫ — столь же необходимая составная часть любой клетки, как и белок. В растительных клетках их значительно больше, чем в животных. Углеводы — своеобразное «топливо» для живой клетки: окисляясь, они высвобождают химическую энергию, которая расходуется клеткой на все процессы жизнедеятельности. У растений углеводы выполняют и важные строительные функции: из них образуются оболочки как живых клеток, так и мертвых (древесина).

По химическому составу углеводы делятся на две большие группы: простые и сложные углеводы

Функции углеводов: строительная и энергетическая.

ЛИПИДЫ — также обязательная составная часть любой клетки. Как и углеводы, жиры используются клеткой как источник энергии: при расщеплении жиров освобождается энергия. Подкожный жир играет важную теплоизоляционную роль у многих животных (водные млекопитающие). У животных, впадающих зимой в спячку, жиры обеспечивают организм необходимой энергией, так как питательные вещества извне в это время не поступают. Жиры составляют запас питательных веществ и в семенах многих растений.

Функции липидов: энергетическая, строительная и транспотрная

НУКЛЕИНОВЫЕ КИСЛОТЫ впервые были обнаружены в ядрах клеток. Существует два типа нуклеиновых кислот: дезоксирибонуклеиновые (сокращенно ДНК) и рибонуклеиновые (сокращенно РНК). ДНК содержится преимущественно в ядре клетки, РНК — в цитоплазме и в ядре. Значение нуклеиновых кислот состоит в том, что они обеспечивают синтез в клетке специфических для нее белков. Благодаря функции ДНК, связанной с синтезом белков-ферментов, осуществляется и ее генетическая роль: ДНК является носителем наследственной информации.

.

5. ДОМАШНЕЕ ЗАДАНИЕ

Параграф

Обмен веществ и энергии — Колесов, Маш, Беляев 8 класс (ответы)

144. Прочитайте п. 36 «Обмен веществ и энергии – основное свойство всех живых существ»

Назовите три фазы обмена веществ

Фазы обмена веществ:

1. Подготовительная фаза

2. Пластический обмен

3. Энергетический обмен


145. Дайте определение понятий

Пластический обмен – создание новых соединений и структур для данного организма

Энергетический обмен – биологическое окисление выделяет энергию, необходимую для организма


146. Заполните таблицу, указав, какова роль белков, жиров, углеводов, минеральных солей и воды в обмене веществ и энергии

ВеществоРоль в обмене веществ и энергии
Белки выполняют структурно-пластическую, опурную, каталитическую, защитную и антитоксичную функции
Жиры при распаде выделяют много энергии, выполняют теплоизоляционную, регулятивную функции
Углеводы распадаются на простые вещества и употребляются организмом
Минеральные соли необходим для поддрежания кислотно-щелочного баланса в клетках тела
Вода транспортировка питательных веществ и кислорода, вывод продуктов распада

147. Напишите, по какому критерию химические элементы, входящие в состав организма, подразделяют на макроэлементы и микроэлементы. Укажите элементы, относящиеся к этим группам

K, Ca, Na, P, Cl, Fe, Zn, f, Co

Макроэлементы: K, Ca, Na, P, Cl – на 100 г приходится сотни десятков макроэлементов

Микроэлементы: Fe, Zn, f, Co – на 100 г приходится 10 и сотые доли этих веществ


148. Перечислите водорастворимые и жирорастворимые витамины

Водорастворимые витамины: C, B1, B2, B12

Жирорастворимые витамины: A, D, E


149. Допишите утверждения, вписав в текст соответствующие слова: отсутствие, избыток, недостаток

Авитаминозы развиваются при отсутствии витаминов, гиповитаминозы – при недостатке витаминов, гипервитаминозы – при избытке витаминов


150. Законспектируйте статью «Водорастворимые витамины» п. 37, сведя материал в следующую таблицу

ВитаминФункцииСимптомы авитоминоза и гиповитаминозаИсточники витамина для организма
С способствует заживлению ран, ожогов, кровоточащих десен, снижает уровень холестерина в крови, укрепляет иммунную систему слабеют, кровоточат десна, выпадают зубы фрукты, овощи
В1 способствует росту, улучшает пищеварение, особенно переваривание углеводов, нормализует работу нервной системы, мышц и сердца раздражительность, снижение внимания, памяти, ухудшение сна белый черный хлеб, мука грубого помола, зеленый горошек
В2 способствует росту и репродуктивным функциям, сохраняет здоровой кожу, волосы, ногти, улучшает зрение, уменьшает утомляемость глаз, участвует в обмене белков, жиров и углеводов воспаляется слизистая ротовой полости, языка и др. пищеварительных органов молоко, сыр, яйца, гречневая крупа
В12 формирует и восстанавливает эритроциты, предотвращая анемию, у детей способствует росту и улучшению аппетита, увеличивает энергию, поддерживает нервную систему в здоровом состоянии, снижает раздражительность при дефеците не вырабатывается фермент, отвечающий за созревание клеток крови в костном мозгу в продуктах животного происхождения, в ксиломолочных продуктах

151. Законспектируйте статью «Жирорастворимые витамины» п.37, сведя материал в следующую таблицу

ВитаминФункцииСимптомы авитоминоза и гиповитаминозаИсточники витамина для организма
А участвует в росте эпителиальных тканей «куриная слепота», изъязвление кожи и слизистых оболочек печень, сливочное масло, сыр
D участвует в развитии костной ткани рахит, снижение тонуса мышц рыбий жир, печень, яичный желток
E участвует в функционировании органов размножения замедляется рост и развитие организма рыбий жир, печень, яичный желток

152. Прочитайте статьи «Основной обмен» и «Общий обмен» п. 38. Опишите, в чём различие между основным и общим обменом. Результаты сведите в следующую таблицу

Основной обменОбщий обмен
Интенсивность обмена веществ при определнных условиях Фактические энерготраты совершаемые человеком за еденицу времени

153. Подсчитайте калорийность приведённых в таблице продуктов, используя данные статьи «Энергетическая ёмкость» (калорийность) пищи п.38

Решите задачу и впишите результаты расчётов в таблицу

Петя съел на завтрак яичницу из двух яиц и выпил стакан кефира с сахаром, а Миша – сосиску с капустой и стакан чая. Сколько килоджоулей (кДж) получил каждый из них?

Итого: Петя 18411,68 и Миша 30501,12


154. Отчёт о лабораторной работе «Установление зависимости между нагрузкой и уровнем энергетического баланса по результатам функциональной пробы с задержкой дыхания до и после нагрузки» (с. 196-197 учебника)

56%, 60%, 16%, 93%, 52%, 51%, 29%, 93%

Исходя из сравнения результатов опыта с нормативными данными, приведёнными в таблице учебника, испытуемого можно отнести к категории здоровый тренированный

Допишите ответы на вопросы

При задержке дыхания в крови накапливается углекислый газ, потому что по венозной крови идёт углекислый газ

При определённой концентрации углекислого газа в крови дыхание восстанавливается непроизвольно, потому что углекислый газ выделяется

Эти воздействия называются гуморальными, потому что они саморегулируются

После работы удаётся задержать дыхание на меньшее время, чем в состоянии покоя, потому что 

У тренированного человека энергетический обмен происходит более экономно, чем у человека нетренированного, потому что за 1 действие тренированный сжигает меньше энергии, чем нетренированный

Ответ §9. Обмен веществ и энергия

165) Сформулируйте несколько вопросов, ответы на которые вы хотите получить при изучении этой темы.

 

Для чего нужен обмен веществ? У всех живых организмов есть обмен веществ?

 

166) Прочитайте §36 «Обмен веществ и энергии как основная функция организма». Объясните, почему обмен веществ и энергии считают важнейшим свойством всего живого.

 

Обмен веществ определяет цикличность жизни.

 

167) Дайте определения понятий.

 

Пластический обмен – синтез органических веществ (белков, жиров и углеводов), необходимых организму.

Энергетический обмен – биологическое окисление органических веществ, в результате которого образуется энергия.

 

168) Заполните таблицу, указав, какова роль белков, жиров, углеводов, минеральных солей и воды в обмене веществ и энергии.

 

Вещество Роль в обмене веществ и энергии
Белки Белки в организме выполняют структурно — пластическую, опорную, каталитическую, защитную, транспортную, антитоксическую и энергетическую функции
Жиры Жиры выполняют структурно — пластическую, регуляторную, теплоизоляционную и энергетическую функции
Углеводы Углеводы выполняют структурно — пластическую и защитную функции, а так же используются в качестве источника энергии
Минеральные соли Минеральные соли содержатся в клеточных ядрах и цитоплазме, в жидкостях, образующих внутреннюю среду, в пищеварительных соках и других биологических жидкостях
Вода Вода — универсальный растворитель, среда для биохимических процессов

 

169) Приведите примеры, подтверждающие использование организмом тепловой, механической и электрической энергии.

 

1) Теплообмен.

2) Движение.

3) Электрические импульсы сердца.

 

170) Напишите, по какому критерию химические элементы, входящие в состав организма, подразделяют на макроэлементы и микроэлементы. Укажите элементы, относящиеся к этим группам.

 

В зависимости от величины потребностей организма в минеральных солях входящие в них элементы подразделяются на макро- и микроэлементы.

Макроэлементы: Ca, K, Na, Cl, P.

Микроэлементы: Fe, Co, Zn, F, l.

 

171) Перечислите водорастворимые и жирорастворимые витамины.

 

Водорастворимые витамины: С, В1, В2, В12.

Жирорастворимые витамины: А, D, Е.

 

172) Допишите утверждения, вписав в текст соответствующие слова в нужном падеже: отсутствие, избыток, недостаток.

 

Авитаминозы развиваются при отсутствии витаминов, гиповитаминозы – при недостатке витаминов, гипервитаминозы – при избытке витаминов.

 

173) Законспектируйте статью «Водорастворимые витамины» (§37), сведя материал в следующую таблицу.

 

Витамин Функции Симптомы авитоминоза и гиповитаминоза Источники витамина для организма
С Входит в состав многих ферментов, антител, предохраняет от окисления клеточные мембраны и другие органоиды Слабость, ухудшение иммунитета, кровоточивость десен, выпадение зубов (развитие цинга) Плоды шиповника, черной и красной смородины, лимоны, капуста
В1 Участвуют в работе окислительных ферментов Паралич, судороги, сердечная недостаточность, отеки, слабость Оболочки зерен злаковых растений, зеленый горошек, гречневая и овсяная крупы, хлеб грубого помола
В2 Влияет на состояние эпителия (особенно пищеварительного кнаала), влияет на функции слизистой оболочки ротовой полости и других органов пищеварения Восполение слизистой оболочки ротовой полости, белки глаз и внутренняя поверхность век, трещинки на уголках рта, нарушение зрения, малокровие Молочные продукты, яйца, печень, почки, гречневая крупа
В12 Созревание клеток крови в красном костном мозге Малокровие Продукты животного происхождения

 

174) Законспектируйте статью «Жирорастворимые витамины» (§37), сведя материал в следующую таблицу.

 

Витамин Функции Симптомы авитоминоза и гиповитаминоза Источники витамина для организма
А Зрение в темноте, рост эпителиальной ткани «Куриная слепота», слабость эпителиальных оболеч Продукты животного происхождения, вареные красные овощи
D Развитие костей Искривление костей, сниженный тонус мышц, неустойчивость к инфекциям Рыбий жир, печень , яичный белок
Е Нормальное функционирование органов размножения Анемия, неврологические растройства Рыбий жир, печень , яичный белок

 

175) Прочитайте статьи «Основной обмен» и «Общий обмен» (§38). Опишите, в чём различие между основным и общим обменом. Результаты сведите в следующую таблицу.

 

Основной обмен Общий обмен
Объем энергозатрат в нормальных комфортных усовиях Фактические энергозатраты, совершаемые человеком за единицу времени

 

176) Подсчитайте калорийность приведённых в таблице продуктов, используя данные статьи «Энергетическая ёмкость (калорийность) пищи» (§38).

 

 

Решите задачу и впишите результаты расчётов в таблицу.
Петя съел на завтрак яичницу из двух яиц и выпил стакан кефира с сахаром, а Миша – сосиску с капустой и стакан чая. Сколько килоджоулей (кДж) получил каждый из них?

 

 

177) Отчёт о лабораторной работ «Установление зависимости между нагрузкой и уровнем энергетического баланса по результатам функциональной пробы с задержкой дыхания до и после нагрузки» (с. 245–247 учебника).

 

Исходя из сравнения результатов опыта с нормативными данными, приведёнными в таблице учебника, испытуемого можно отнести к категории здоровые тренированные.

 

Допишите ответы на вопросы.

 

При задержке дыхания в крови накапливается углекислый газ, потому что кислород не поступает, газообмен не происходит.
При определённой концентрации углекислого газа в крови дыхание восстанавливается непроизвольно, потому что срабатывает безусловный рефлекс.
Эти воздействия называются гуморальными, потому что регуляция осуществляется с помощью гормонов.
После работы удаётся задержать дыхание на меньшее время, чем в состоянии покоя, потому что после работы наблюдается учащенное сердцебиение , организм быстрее расходует кислород, поэтому и потребност в нем возникает быстрее
У тренированного человека энергетический обмен происходит более экономно, чем у человека нетренированного, потому что при регулярных тренировках и правильном питании возникает тренировочный эффект, в результате которого синтез обгоняет биологическое окисление

 

178) Оцените, что нового вы узнали при изучении этой темы. Предположите, как могут пригодиться вам эти знания в повседневной жизни.

 

Я узнал о правильном питании, о здоровье своего организма. Эти знания пригодятся мне в жизни (правильное питание, необходимость тренировок).

2.3 Биологические молекулы — Концепции биологии — 1-е канадское издание

К концу этого раздела вы сможете:

  • Опишите, почему углерод имеет решающее значение для жизни
  • Объясните влияние незначительных изменений аминокислот на организмы
  • Опишите четыре основных типа биологических молекул
  • Понимать функции четырех основных типов молекул

Посмотрите видео о белках и белковых ферментах.

Большие молекулы, необходимые для жизни и состоящие из более мелких органических молекул, называются биологическими макромолекулами . Существует четыре основных класса биологических макромолекул (углеводы, липиды, белки и нуклеиновые кислоты), каждый из которых является важным компонентом клетки и выполняет широкий спектр функций. Вместе эти молекулы составляют большую часть массы клетки. Биологические макромолекулы являются органическими, что означает, что они содержат углерод. Кроме того, они могут содержать водород, кислород, азот, фосфор, серу и дополнительные второстепенные элементы.

Часто говорят, что жизнь «основана на углероде». Это означает, что атомы углерода, связанные с другими атомами углерода или другими элементами, образуют фундаментальные компоненты многих, если не большинства, молекул, уникальных для живых существ. Другие элементы играют важную роль в биологических молекулах, но углерод определенно квалифицируется как элемент «фундамент» для молекул в живых существах. Это связывающие свойства атомов углерода, которые ответственны за его важную роль.

Углерод содержит четыре электрона в своей внешней оболочке.Следовательно, он может образовывать четыре ковалентные связи с другими атомами или молекулами. Простейшая молекула органического углерода — метан (CH 4 ), в котором четыре атома водорода связаны с атомом углерода.

Рис. 2.12. Углерод может образовывать четыре ковалентные связи, образуя органическую молекулу. Самая простая молекула углерода — это метан (Ch5), изображенный здесь.

Однако более сложные конструкции изготавливаются с использованием углерода. Любой из атомов водорода может быть заменен другим атомом углерода, ковалентно связанным с первым атомом углерода.Таким образом могут быть образованы длинные и разветвленные цепи углеродных соединений (рис. 2.13 a ). Атомы углерода могут связываться с атомами других элементов, таких как азот, кислород и фосфор (рис. 2.13 b ). Молекулы также могут образовывать кольца, которые сами могут связываться с другими кольцами (рис. 2.13 c ). Это разнообразие молекулярных форм объясняет разнообразие функций биологических макромолекул и в значительной степени основано на способности углерода образовывать множественные связи с самим собой и другими атомами.

Рис. 2.13. Эти примеры показывают три молекулы (обнаруженные в живых организмах), которые содержат атомы углерода, различным образом связанные с другими атомами углерода и атомами других элементов. (а) Эта молекула стеариновой кислоты имеет длинную цепочку атомов углерода. (б) Глицин, компонент белков, содержит атомы углерода, азота, кислорода и водорода. (c) Глюкоза, сахар, имеет кольцо из атомов углерода и один атом кислорода.

Углеводы — это макромолекулы, с которыми большинство потребителей в некоторой степени знакомо.Чтобы похудеть, некоторые люди придерживаются «низкоуглеводной» диеты. Спортсмены, напротив, часто «нагружают углеводы» перед важными соревнованиями, чтобы убедиться, что у них достаточно энергии для соревнований на высоком уровне. Фактически, углеводы являются неотъемлемой частью нашего рациона; злаки, фрукты и овощи — все это естественные источники углеводов. Углеводы обеспечивают организм энергией, особенно через глюкозу, простой сахар. Углеводы также выполняют другие важные функции у людей, животных и растений.

Углеводы можно представить формулой (CH 2 O) n , где n — количество атомов углерода в молекуле. Другими словами, соотношение углерода, водорода и кислорода в молекулах углеводов составляет 1: 2: 1. Углеводы подразделяются на три подтипа: моносахариды, дисахариды и полисахариды.

Моносахариды (моно- = «один»; sacchar- = «сладкий») представляют собой простые сахара, наиболее распространенным из которых является глюкоза.В моносахаридах количество атомов углерода обычно составляет от трех до шести. Большинство названий моносахаридов оканчиваются суффиксом -ose. В зависимости от количества атомов углерода в сахаре они могут быть известны как триозы (три атома углерода), пентозы (пять атомов углерода) и гексозы (шесть атомов углерода).

Моносахариды могут существовать в виде линейной цепи или кольцевых молекул; в водных растворах они обычно находятся в кольцевой форме.

Химическая формула глюкозы: C 6 H 12 O 6 .У большинства живых существ глюкоза является важным источником энергии. Во время клеточного дыхания из глюкозы выделяется энергия, которая используется для выработки аденозинтрифосфата (АТФ). Растения синтезируют глюкозу, используя углекислый газ и воду в процессе фотосинтеза, а глюкоза, в свою очередь, используется для удовлетворения потребностей растений в энергии. Избыток синтезированной глюкозы часто хранится в виде крахмала, который расщепляется другими организмами, питающимися растениями.

Галактоза (входит в состав лактозы или молочного сахара) и фруктоза (содержится во фруктах) — другие распространенные моносахариды.Хотя глюкоза, галактоза и фруктоза имеют одинаковую химическую формулу (C 6 H 12 O 6 ), они различаются структурно и химически (и известны как изомеры) из-за разного расположения атомов в углеродной цепи. .

Рис. 2.14. Глюкоза, галактоза и фруктоза — изомерные моносахариды, что означает, что они имеют одинаковую химическую формулу, но немного разные структуры.

Дисахариды (ди- = «два») образуются, когда два моносахарида подвергаются реакции дегидратации (реакции, при которой происходит удаление молекулы воды).Во время этого процесса гидроксильная группа (–ОН) одного моносахарида соединяется с атомом водорода другого моносахарида, высвобождая молекулу воды (H 2 O) и образуя ковалентную связь между атомами в двух молекулах сахара.

Обычные дисахариды включают лактозу, мальтозу и сахарозу. Лактоза — это дисахарид, состоящий из мономеров глюкозы и галактозы. Он содержится в молоке. Мальтоза, или солодовый сахар, представляет собой дисахарид, образующийся в результате реакции дегидратации между двумя молекулами глюкозы.Наиболее распространенным дисахаридом является сахароза или столовый сахар, который состоит из мономеров глюкозы и фруктозы.

Длинная цепь моносахаридов, связанных ковалентными связями, известна как полисахарид (поли- = «много»). Цепь может быть разветвленной или неразветвленной, и она может содержать разные типы моносахаридов. Полисахариды могут быть очень большими молекулами. Крахмал, гликоген, целлюлоза и хитин являются примерами полисахаридов.

Крахмал — это хранимая в растениях форма сахаров, состоящая из амилозы и амилопектина (оба полимера глюкозы).Растения способны синтезировать глюкозу, а избыток глюкозы откладывается в виде крахмала в различных частях растений, включая корни и семена. Крахмал, который потребляется животными, расщепляется на более мелкие молекулы, такие как глюкоза. Затем клетки могут поглощать глюкозу.

Гликоген — это форма хранения глюкозы у людей и других позвоночных, состоящая из мономеров глюкозы. Гликоген является животным эквивалентом крахмала и представляет собой сильно разветвленную молекулу, обычно хранящуюся в клетках печени и мышц.Когда уровень глюкозы снижается, гликоген расщепляется с высвобождением глюкозы.

Целлюлоза — один из самых распространенных природных биополимеров. Клеточные стенки растений в основном состоят из целлюлозы, которая обеспечивает структурную поддержку клетки. Дерево и бумага в основном целлюлозные по своей природе. Целлюлоза состоит из мономеров глюкозы, которые связаны связями между определенными атомами углерода в молекуле глюкозы.

Каждый второй мономер глюкозы в целлюлозе переворачивается и плотно упаковывается в виде удлиненных длинных цепей.Это придает целлюлозе жесткость и высокую прочность на разрыв, что так важно для растительных клеток. Целлюлоза, проходящая через нашу пищеварительную систему, называется пищевыми волокнами. Хотя связи глюкозы и глюкозы в целлюлозе не могут быть разрушены пищеварительными ферментами человека, травоядные животные, такие как коровы, буйволы и лошади, способны переваривать траву, богатую целлюлозой, и использовать ее в качестве источника пищи. У этих животных определенные виды бактерий обитают в рубце (часть пищеварительной системы травоядных) и секретируют фермент целлюлазу.В аппендиксе также содержатся бактерии, которые расщепляют целлюлозу, что придает ей важную роль в пищеварительной системе жвачных животных. Целлюлазы могут расщеплять целлюлозу на мономеры глюкозы, которые могут использоваться животным в качестве источника энергии.

Углеводы выполняют другие функции у разных животных. У членистоногих, таких как насекомые, пауки и крабы, есть внешний скелет, называемый экзоскелетом, который защищает их внутренние части тела. Этот экзоскелет состоит из биологической макромолекулы , хитина , азотистого углевода.Он состоит из повторяющихся единиц модифицированного сахара, содержащего азот.

Таким образом, из-за различий в молекулярной структуре углеводы могут выполнять самые разные функции хранения энергии (крахмал и гликоген), а также структурной поддержки и защиты (целлюлоза и хитин).

Рис. 2.15. Хотя их структура и функции различаются, все полисахаридные углеводы состоят из моносахаридов и имеют химическую формулу (Ch3O) n.

Зарегистрированный диетолог: Ожирение является проблемой для здоровья во всем мире, и многие болезни, такие как диабет и болезни сердца, становятся все более распространенными из-за ожирения.Это одна из причин, почему к зарегистрированным диетологам все чаще обращаются за советом. Зарегистрированные диетологи помогают планировать пищевые продукты и программы питания для людей в различных условиях. Они часто работают с пациентами в медицинских учреждениях, разрабатывая планы питания для профилактики и лечения заболеваний. Например, диетологи могут научить пациента с диабетом контролировать уровень сахара в крови, употребляя в пищу правильные типы и количества углеводов. Диетологи также могут работать в домах престарелых, школах и частных клиниках.

Чтобы стать дипломированным диетологом, нужно получить как минимум степень бакалавра в области диетологии, питания, пищевых технологий или в смежных областях. Кроме того, зарегистрированные диетологи должны пройти программу стажировки под присмотром и сдать национальный экзамен. Те, кто занимается диетологией, проходят курсы по питанию, химии, биохимии, биологии, микробиологии и физиологии человека. Диетологи должны стать экспертами в химии и функциях пищи (белков, углеводов и жиров).

Через призму коренных народов (Сюзанна Вилкерсон и Чарльз Мольнар)

Я работаю в колледже Камосун, расположенном в красивой Виктории, Британская Колумбия, с кампусами на традиционных территориях народов леквунгенов и васаней. Подземная луковица для хранения цветка камас, показанная ниже, была важным источником пищи для многих коренных народов острова Ванкувер и всей западной части Северной Америки. Луковицы камас по-прежнему употребляются в пищу как традиционный источник пищи, и приготовление луковиц камас относится к этому текстовому разделу об углеводах.

Рис. 2.16 Изображение синего цветка камас и насекомого-опылителя. Подземная лампочка камаса запекается в костре. Тепло действует как фермент панкреатическая амилаза и расщепляет длинные цепи неперевариваемого инулина на усвояемые моно- и дисахариды.

Чаще всего растения вырабатывают крахмал как запасенную форму углеводов. Некоторые растения, например камас, создают инулин. Инулин используется в качестве пищевых волокон, однако он не усваивается людьми. Если бы вы откусили сырую луковицу камаса, она была бы горькой и имела липкую консистенцию.Метод, используемый коренными народами для приготовления удобоваримых и вкусных камас, заключается в медленном запекании луковиц в течение длительного периода в подземной чаше для костра, покрытой особыми листьями и почвой. Тепло действует как фермент амилаза поджелудочной железы и расщепляет длинные цепи инулина на легкоусвояемые моно- и дисахариды.

Правильно запеченные луковицы камас по вкусу напоминают смесь печеной груши и вареного инжира. Важно отметить, что, хотя синие камы являются источником пищи, их не следует путать с белыми камасами смерти, которые особенно токсичны и смертельны.Цветки выглядят по-разному, но луковицы очень похожи.

Липиды включают разнообразную группу соединений, которые объединены общим признаком. Липиды гидрофобны («водобоязненные») или нерастворимы в воде, потому что они неполярные молекулы. Это потому, что они являются углеводородами, которые включают только неполярные углерод-углеродные или углерод-водородные связи. Липиды выполняют в клетке множество различных функций. Клетки хранят энергию для длительного использования в виде липидов, называемых , жирами .Липиды также обеспечивают изоляцию растений и животных от окружающей среды. Например, они помогают водным птицам и млекопитающим оставаться сухими из-за их водоотталкивающих свойств. Липиды также являются строительными блоками многих гормонов и важной составляющей плазматической мембраны. Липиды включают жиры, масла, воски, фосфолипиды и стероиды.

Рис. 2.17. Гидрофобные липиды в мехе водных млекопитающих, таких как речная выдра, защищают их от непогоды.

Молекула жира, такая как триглицерид, состоит из двух основных компонентов — глицерина и жирных кислот.Глицерин — это органическое соединение с тремя атомами углерода, пятью атомами водорода и тремя гидроксильными (–OH) группами. Жирные кислоты имеют длинную цепь углеводородов, к которой присоединена кислая карбоксильная группа, отсюда и название «жирная кислота». Количество атомов углерода в жирной кислоте может составлять от 4 до 36; наиболее распространены те, которые содержат 12–18 атомов углерода. В молекуле жира жирная кислота присоединена к каждому из трех атомов кислорода в -ОН-группах молекулы глицерина ковалентной связью.

Фигура 2.18 Липиды включают жиры, такие как триглицериды, которые состоят из жирных кислот и глицерина, фосфолипидов и стероидов.

Во время образования этой ковалентной связи высвобождаются три молекулы воды. Три жирные кислоты в жире могут быть похожими или разными. Эти жиры также называют триглицеридами , потому что они содержат три жирные кислоты. Некоторые жирные кислоты имеют общие названия, указывающие на их происхождение. Например, пальмитиновая кислота, насыщенная жирная кислота, получают из пальмы.Арахидовая кислота получена из Arachis hypogaea , научного названия арахиса.

Жирные кислоты могут быть насыщенными и ненасыщенными. В цепи жирной кислоты, если есть только одинарные связи между соседними атомами углерода в углеводородной цепи, жирная кислота является насыщенной. Насыщенные жирные кислоты насыщены водородом; другими словами, количество атомов водорода, прикрепленных к углеродному скелету, максимально.

Когда углеводородная цепь содержит двойную связь, жирная кислота представляет собой ненасыщенную жирную кислоту .

Большинство ненасыщенных жиров являются жидкими при комнатной температуре и называются маслами . Если в молекуле есть одна двойная связь, то он известен как мононенасыщенный жир (например, оливковое масло), а если имеется более одной двойной связи, то он известен как полиненасыщенный жир (например, масло канолы).

Насыщенные жиры плотно упаковываются и остаются твердыми при комнатной температуре. Животные жиры со стеариновой кислотой и пальмитиновой кислотой, содержащиеся в мясе, и жир с масляной кислотой, содержащиеся в масле, являются примерами насыщенных жиров.Млекопитающие хранят жиры в специализированных клетках, называемых адипоцитами, где жировые шарики занимают большую часть клетки. У растений жир или масло хранятся в семенах и используются в качестве источника энергии во время эмбрионального развития.

Ненасыщенные жиры или масла обычно растительного происхождения и содержат ненасыщенные жирные кислоты. Двойная связь вызывает изгиб или «перегиб», который препятствует плотной упаковке жирных кислот, сохраняя их в жидком состоянии при комнатной температуре. Оливковое масло, кукурузное масло, масло канолы и жир печени трески являются примерами ненасыщенных жиров.Ненасыщенные жиры помогают повысить уровень холестерина в крови, тогда как насыщенные жиры способствуют образованию бляшек в артериях, что увеличивает риск сердечного приступа.

В пищевой промышленности масла искусственно гидрогенизируются для придания им полутвердого состояния, что приводит к меньшей порче и увеличению срока хранения. Проще говоря, газообразный водород пропускают через масла, чтобы отвердить их. Во время этого процесса гидрирования двойные связи цис -конформации в углеводородной цепи могут быть преобразованы в двойные связи в транс -конформации.Это образует , транс, -жир, , из -цис, -жир. Ориентация двойных связей влияет на химические свойства жира.

Рис. 2.19. В процессе гидрогенизации ориентация двойных связей изменяется, в результате чего из цис-жира образуется трансжир. Это изменяет химические свойства молекулы.

Маргарин, некоторые виды арахисового масла и шортенинг являются примерами искусственно гидрогенизированных транс -жиров. Недавние исследования показали, что увеличение транс -жиров в рационе человека может привести к увеличению уровня липопротеинов низкой плотности (ЛПНП) или «плохого» холестерина, что, в свою очередь, может привести к отложению бляшек в организме человека. артерии, что приводит к болезни сердца.Многие рестораны быстрого питания недавно отказались от использования жиров транс и , а на этикетках пищевых продуктов в США теперь требуется указывать содержание жира транс .

Незаменимые жирные кислоты — это жирные кислоты, которые необходимы, но не синтезируются человеческим организмом. Следовательно, их необходимо дополнять с помощью диеты. Омега-3 жирные кислоты попадают в эту категорию и являются одной из двух известных незаменимых жирных кислот для человека (другая — омега-6 жирные кислоты).Они представляют собой тип полиненасыщенных жиров и называются омега-3 жирными кислотами, потому что третий углерод на конце жирной кислоты участвует в двойной связи.

Лосось, форель и тунец являются хорошими источниками жирных кислот омега-3. Жирные кислоты омега-3 важны для работы мозга, нормального роста и развития. Они также могут предотвратить сердечные заболевания и снизить риск рака.

Как и углеводы, жиры получили широкую огласку. Это правда, что чрезмерное употребление жареной и другой «жирной» пищи приводит к увеличению веса.Однако жиры выполняют важные функции. Жиры служат долгосрочным накопителем энергии. Они также обеспечивают изоляцию тела. Поэтому «здоровые» ненасыщенные жиры в умеренных количествах следует употреблять регулярно.

Фосфолипиды являются основным компонентом плазматической мембраны. Как и жиры, они состоят из цепей жирных кислот, прикрепленных к глицерину или подобной основной цепи. Однако вместо трех жирных кислот есть две жирные кислоты, а третий углерод глицериновой цепи связан с фосфатной группой.Фосфатная группа модифицируется добавлением спирта.

Фосфолипид имеет как гидрофобные, так и гидрофильные участки. Цепи жирных кислот гидрофобны и исключают себя из воды, тогда как фосфат гидрофильный и взаимодействует с водой.

Клетки окружены мембраной, которая имеет двойной слой фосфолипидов. Жирные кислоты фосфолипидов обращены внутрь, от воды, тогда как фосфатная группа может быть обращена либо к внешней среде, либо к внутренней части клетки, которые оба являются водными.

Через призму коренных народов

Для первых народов Тихоокеанского Северо-Запада богатый жиром рыбный оолиган с содержанием жира 20% от веса тела был важной частью рациона нескольких коренных народов. Почему? Поскольку жир является наиболее калорийной пищей, и наличие компактного высококалорийного источника энергии, способного хранить, было бы важным для выживания. Характер жира также сделал его важным товаром. Как и лосось, оолиган возвращается в свое русло после долгих лет в море. Его прибытие ранней весной сделало его первым свежим продуктом в году.В цимшианских языках о прибытии оолигана … традиционно объявляли криком: «Хлаа аат’иксши халимоотхв!», Что означает: «Наш Спаситель только что прибыл!»

Рисунок 2.20 Изображение приготовленного оолигана. Эта жирная рыба с содержанием жира 20% от веса тела является важной частью диеты коренных народов.

Как вы уже узнали, все жиры гидрофобны (ненавидят воду). Чтобы отделить жир, рыбу отваривают, а плавающий жир снимают. Жировой состав улигана состоит из 30% насыщенных жиров (например, сливочного масла) и 55% мононенасыщенных жиров (например, растительных масел).Важно отметить, что это твердая смазка при комнатной температуре. Поскольку в нем мало полиненасыщенных жиров (которые быстро окисляются и портятся), его можно хранить для дальнейшего использования и использовать в качестве предмета торговли. Считается, что его состав делает его таким же полезным, как оливковое масло, или лучше, поскольку он содержит жирные кислоты омега-3, которые снижают риск диабета и инсульта. Он также богат тремя жирорастворимыми витаминами A, E и K.

Стероиды и воски

В отличие от фосфолипидов и жиров, обсуждавшихся ранее, стероиды и имеют кольцевую структуру.Хотя они не похожи на другие липиды, они сгруппированы с ними, потому что они также гидрофобны. Все стероиды имеют четыре связанных углеродных кольца, а некоторые из них, как и холестерин, имеют короткий хвост.

Холестерин — стероид. Холестерин в основном синтезируется в печени и является предшественником многих стероидных гормонов, таких как тестостерон и эстрадиол. Он также является предшественником витаминов Е и К. Холестерин является предшественником солей желчных кислот, которые помогают в расщеплении жиров и их последующем усвоении клетками.Хотя о холестерине часто говорят отрицательно, он необходим для правильного функционирования организма. Это ключевой компонент плазматических мембран клеток животных.

Воски состоят из углеводородной цепи со спиртовой (–OH) группой и жирной кислотой. Примеры восков животного происхождения включают пчелиный воск и ланолин. У растений также есть воск, например покрытие на листьях, которое помогает предотвратить их высыхание.

Концепция в действии


Чтобы получить дополнительную информацию о липидах, исследуйте «Биомолекулы: Липиды» с помощью этой интерактивной анимации.

Белки являются одной из самых распространенных органических молекул в живых системах и обладают самым разнообразным набором функций среди всех макромолекул. Белки могут быть структурными, регуляторными, сократительными или защитными; они могут служить для транспортировки, хранения или перепонки; или они могут быть токсинами или ферментами. Каждая клетка живой системы может содержать тысячи различных белков, каждый из которых выполняет уникальную функцию. Их структуры, как и их функции, сильно различаются. Однако все они представляют собой полимеры аминокислот, расположенных в линейной последовательности.

Функции белков очень разнообразны, потому что существует 20 различных химически различных аминокислот, которые образуют длинные цепи, и аминокислоты могут располагаться в любом порядке. Например, белки могут функционировать как ферменты или гормоны. Ферменты , которые вырабатываются живыми клетками, являются катализаторами биохимических реакций (например, пищеварения) и обычно являются белками. Каждый фермент специфичен для субстрата (реагента, который связывается с ферментом), на который он действует. Ферменты могут разрушать молекулярные связи, переупорядочивать связи или образовывать новые связи.Примером фермента является амилаза слюны, которая расщепляет амилозу, компонент крахмала.

Гормоны представляют собой химические сигнальные молекулы, обычно белки или стероиды, секретируемые эндокринной железой или группой эндокринных клеток, которые контролируют или регулируют определенные физиологические процессы, включая рост, развитие, метаболизм и размножение. Например, инсулин — это белковый гормон, который поддерживает уровень глюкозы в крови.

Белки имеют разную форму и молекулярную массу; некоторые белки имеют глобулярную форму, тогда как другие имеют волокнистую природу.Например, гемоглобин — это глобулярный белок, а коллаген, обнаруженный в нашей коже, — это волокнистый белок. Форма белка имеет решающее значение для его функции. Изменения температуры, pH и воздействие химикатов могут привести к необратимым изменениям формы белка, что приведет к потере функции или денатурации (более подробно это будет обсуждаться позже). Все белки состоят из 20 одних и тех же аминокислот по-разному.

Аминокислоты — это мономеры, из которых состоят белки.Каждая аминокислота имеет одинаковую фундаментальную структуру, которая состоит из центрального атома углерода, связанного с аминогруппой (–NH 2 ), карбоксильной группы (–COOH) и атома водорода. Каждая аминокислота также имеет другой вариабельный атом или группу атомов, связанных с центральным атомом углерода, известную как группа R. Группа R — единственное различие в структуре между 20 аминокислотами; в остальном аминокислоты идентичны.

Рис. 2.21. Аминокислоты состоят из центрального углерода, связанного с аминогруппой (–Nh3), карбоксильной группой (–COOH) и атомом водорода.Четвертая связь центрального углерода варьируется среди различных аминокислот, как видно из этих примеров аланина, валина, лизина и аспарагиновой кислоты.

Химическая природа группы R определяет химическую природу аминокислоты в ее белке (то есть, является ли она кислотной, основной, полярной или неполярной).

Последовательность и количество аминокислот в конечном итоге определяют форму, размер и функцию белка. Каждая аминокислота присоединена к другой аминокислоте ковалентной связью, известной как пептидная связь, которая образуется в результате реакции дегидратации.Карбоксильная группа одной аминокислоты и аминогруппа второй аминокислоты объединяются, высвобождая молекулу воды. Полученная связь представляет собой пептидную связь.

Продукты, образованные такой связью, называются полипептидами . Хотя термины полипептид и белок иногда используются взаимозаменяемо, полипептид технически представляет собой полимер аминокислот, тогда как термин белок используется для полипептида или полипептидов, которые объединились вместе, имеют различную форму и имеют уникальную функцию.

Эволюция в действии

Эволюционное значение цитохрома c Цитохром c является важным компонентом молекулярного механизма, который собирает энергию из глюкозы. Поскольку роль этого белка в производстве клеточной энергии имеет решающее значение, за миллионы лет он очень мало изменился. Секвенирование белков показало, что существует значительное сходство последовательностей между молекулами цитохрома с разных видов; эволюционные отношения можно оценить путем измерения сходства или различий между белковыми последовательностями различных видов.

Например, ученые определили, что цитохром с человека содержит 104 аминокислоты. Для каждой молекулы цитохрома с, которая к настоящему времени была секвенирована у разных организмов, 37 из этих аминокислот находятся в одном и том же положении в каждом цитохроме с. Это указывает на то, что все эти организмы произошли от общего предка. При сравнении последовательностей белков человека и шимпанзе различий в последовательностях не обнаружено. При сравнении последовательностей человека и макаки-резуса было обнаружено единственное различие в одной аминокислоте.Напротив, сравнение человека и дрожжей показывает разницу в 44 аминокислотах, предполагая, что люди и шимпанзе имеют более недавнего общего предка, чем люди и макака-резус или люди и дрожжи.

Структура белка

Как обсуждалось ранее, форма белка имеет решающее значение для его функции. Чтобы понять, как белок приобретает свою окончательную форму или конформацию, нам необходимо понять четыре уровня структуры белка: первичный, вторичный, третичный и четвертичный, .

Уникальная последовательность и количество аминокислот в полипептидной цепи — это ее первичная структура. Уникальная последовательность каждого белка в конечном итоге определяется геном, кодирующим этот белок. Любое изменение в последовательности гена может привести к добавлению другой аминокислоты к полипептидной цепи, вызывая изменение структуры и функции белка. При серповидно-клеточной анемии β-цепь гемоглобина имеет единственную аминокислотную замену, вызывающую изменение как структуры, так и функции белка.Что наиболее примечательно, так это то, что молекула гемоглобина состоит из двух альфа-цепей и двух бета-цепей, каждая из которых состоит примерно из 150 аминокислот. Таким образом, молекула содержит около 600 аминокислот. Структурное различие между нормальной молекулой гемоглобина и молекулой серповидноклеточных клеток, которое резко снижает продолжительность жизни у пораженных людей, заключается в одной аминокислоте из 600.

Из-за этого изменения одной аминокислоты в цепи обычно двояковогнутые или дискообразные эритроциты принимают форму полумесяца или «серпа», что закупоривает артерии.Это может привести к множеству серьезных проблем со здоровьем, таких как одышка, головокружение, головные боли и боли в животе у людей, страдающих этим заболеванием.

Паттерны сворачивания, возникающие в результате взаимодействий между частями аминокислот, не относящихся к R-группам, приводят к вторичной структуре белка. Наиболее распространены альфа (α) -спиральные и бета (β) -пластинчатые листовые структуры. Обе структуры удерживаются в форме водородными связями. В альфа-спирали связи образуются между каждой четвертой аминокислотой и вызывают поворот аминокислотной цепи.

В β-складчатом листе «складки» образованы водородными связями между атомами в основной цепи полипептидной цепи. Группы R прикреплены к атомам углерода и проходят выше и ниже складок складки. Гофрированные сегменты выровнены параллельно друг другу, а водородные связи образуются между одинаковыми парами атомов на каждой из выровненных аминокислот. Структуры α-спирали и β-складчатых листов обнаруживаются во многих глобулярных и волокнистых белках.

Уникальная трехмерная структура полипептида известна как его третичная структура.Эта структура вызвана химическим взаимодействием между различными аминокислотами и участками полипептида. Прежде всего, взаимодействия между группами R создают сложную трехмерную третичную структуру белка. Могут быть ионные связи, образованные между группами R на разных аминокислотах, или водородные связи, помимо тех, которые участвуют во вторичной структуре. Когда происходит сворачивание белка, гидрофобные группы R неполярных аминокислот лежат внутри белка, тогда как гидрофильные группы R лежат снаружи.Первые типы взаимодействий также известны как гидрофобные взаимодействия.

В природе некоторые белки образованы из нескольких полипептидов, также известных как субъединицы, и взаимодействие этих субъединиц образует четвертичную структуру. Слабые взаимодействия между субъединицами помогают стабилизировать общую структуру. Например, гемоглобин представляет собой комбинацию четырех полипептидных субъединиц.

Рис. 2.22 На этих иллюстрациях можно увидеть четыре уровня белковой структуры.

Каждый белок имеет свою уникальную последовательность и форму, удерживаемую химическими взаимодействиями.Если белок подвержен изменениям температуры, pH или воздействию химикатов, структура белка может измениться, потеряв свою форму в результате так называемой денатурации , как обсуждалось ранее. Денатурация часто обратима, поскольку первичная структура сохраняется, если денатурирующий агент удаляется, позволяя белку возобновить свою функцию. Иногда денатурация необратима, что приводит к потере функции. Один из примеров денатурации белка можно увидеть, когда яйцо жарят или варят.Белок альбумина в жидком яичном белке денатурируется при помещении на горячую сковороду, превращаясь из прозрачного вещества в непрозрачное белое вещество. Не все белки денатурируются при высоких температурах; например, бактерии, которые выживают в горячих источниках, имеют белки, которые адаптированы для работы при этих температурах.

Концепция в действии

Чтобы получить дополнительную информацию о белках, исследуйте «Биомолекулы: Белки» с помощью этой интерактивной анимации.

Нуклеиновые кислоты являются ключевыми макромолекулами в непрерывности жизни.Они несут генетический план клетки и несут инструкции для функционирования клетки.

Двумя основными типами нуклеиновых кислот являются дезоксирибонуклеиновая кислота (ДНК) и рибонуклеиновая кислота (РНК) . ДНК — это генетический материал, содержащийся во всех живых организмах, от одноклеточных бактерий до многоклеточных млекопитающих.

Другой тип нуклеиновой кислоты, РНК, в основном участвует в синтезе белка. Молекулы ДНК никогда не покидают ядро, а вместо этого используют посредника РНК для связи с остальной частью клетки.Другие типы РНК также участвуют в синтезе белка и его регуляции.

ДНК и РНК состоят из мономеров, известных как нуклеотидов . Нуклеотиды объединяются друг с другом с образованием полинуклеотида, ДНК или РНК. Каждый нуклеотид состоит из трех компонентов: азотистого основания, пентозного (пятиуглеродного) сахара и фосфатной группы. Каждое азотистое основание в нуклеотиде присоединено к молекуле сахара, которая присоединена к фосфатной группе.

Рис. 2.23. Нуклеотид состоит из трех компонентов: азотистого основания, пентозного сахара и фосфатной группы. ДНК

имеет двойную спиральную структуру. Он состоит из двух цепей или полимеров нуклеотидов. Нити образованы связями между фосфатными и сахарными группами соседних нуклеотидов. Нити связаны друг с другом в своих основаниях водородными связями, и нити наматываются друг на друга по своей длине, отсюда и описание «двойной спирали», что означает двойную спираль.

Рис. 2.24. Химическая структура ДНК с цветной меткой, обозначающей четыре основания, а также фосфатный и дезоксирибозный компоненты основной цепи.

Чередующиеся сахарные и фосфатные группы лежат на внешней стороне каждой цепи, образуя основу ДНК. Азотистые основания сложены внутри, как ступени лестницы, и эти основания соединяются в пару; пары связаны друг с другом водородными связями. Основания спариваются таким образом, чтобы расстояние между скелетами двух цепей было одинаковым по всей длине молекулы. Правило состоит в том, что нуклеотид A соединяется с нуклеотидом T, а G — с C, см. Раздел 9.1 для более подробной информации.

Живые существа основаны на углероде, потому что углерод играет такую ​​важную роль в химии живых существ. Четыре позиции ковалентной связи атома углерода могут дать начало широкому разнообразию соединений с множеством функций, что объясняет важность углерода для живых существ. Углеводы — это группа макромолекул, которые являются жизненно важным источником энергии для клетки, обеспечивают структурную поддержку многих организмов и могут быть обнаружены на поверхности клетки в качестве рецепторов или для распознавания клеток.Углеводы классифицируются как моносахариды, дисахариды и полисахариды, в зависимости от количества мономеров в молекуле.

Липиды — это класс макромолекул, которые по своей природе неполярны и гидрофобны. Основные типы включают жиры и масла, воски, фосфолипиды и стероиды. Жиры и масла представляют собой запасенную форму энергии и могут включать триглицериды. Жиры и масла обычно состоят из жирных кислот и глицерина.

Белки — это класс макромолекул, которые могут выполнять широкий спектр функций для клетки.Они помогают метаболизму, обеспечивая структурную поддержку и действуя как ферменты, переносчики или гормоны. Строительными блоками белков являются аминокислоты. Белки организованы на четырех уровнях: первичный, вторичный, третичный и четвертичный. Форма и функция белка неразрывно связаны; любое изменение формы, вызванное изменениями температуры, pH или химического воздействия, может привести к денатурации белка и потере функции.

Нуклеиновые кислоты — это молекулы, состоящие из повторяющихся единиц нуклеотидов, которые направляют клеточную деятельность, такую ​​как деление клеток и синтез белка.Каждый нуклеотид состоит из пентозного сахара, азотистого основания и фосфатной группы. Есть два типа нуклеиновых кислот: ДНК и РНК.

аминокислота: мономер белка

углевод: биологическая макромолекула, в которой соотношение углерода, водорода и кислорода составляет 1: 2: 1; углеводы служат источниками энергии и структурной поддержкой в ​​клетках

целлюлоза: полисахарид, который составляет клеточные стенки растений и обеспечивает структурную поддержку клетки

хитин: вид углеводов, образующих внешний скелет членистоногих, таких как насекомые и ракообразные, и клеточные стенки грибов

денатурация: потеря формы белка в результате изменений температуры, pH или воздействия химических веществ

дезоксирибонуклеиновая кислота (ДНК): двухцепочечный полимер нуклеотидов, несущий наследственную информацию клетки

дисахарид: два мономера сахара, которые связаны между собой пептидной связью

фермент : катализатор биохимической реакции, который обычно представляет собой сложный или конъюгированный белок

жир: липидная молекула, состоящая из трех жирных кислот и глицерина (триглицерида), которая обычно существует в твердой форме при комнатной температуре

гликоген: запасной углевод у животных

гормон: химическая сигнальная молекула, обычно белок или стероид, секретируемая эндокринной железой или группой эндокринных клеток; действия по контролю или регулированию определенных физиологических процессов

липиды: класс макромолекул, неполярных и нерастворимых в воде

макромолекула: большая молекула, часто образованная полимеризацией более мелких мономеров

моносахарид: отдельная единица или мономер углеводов

нуклеиновая кислота: биологическая макромолекула, несущая генетическую информацию клетки и инструкции для функционирования клетки

нуклеотид: мономер нуклеиновой кислоты; содержит пентозный сахар, фосфатную группу и азотистое основание

масло: ненасыщенный жир, являющийся жидкостью при комнатной температуре

фосфолипид: основной компонент мембран клеток; состоит из двух жирных кислот и фосфатной группы, присоединенной к основной цепи глицерина

полипептид: длинная цепь аминокислот, связанных пептидными связями

полисахарид: длинная цепь моносахаридов; могут быть разветвленными и неразветвленными

белок: биологическая макромолекула, состоящая из одной или нескольких цепочек аминокислот

рибонуклеиновая кислота (РНК): одноцепочечный полимер нуклеотидов, участвующий в синтезе белка

насыщенная жирная кислота: длинноцепочечный углеводород с одинарными ковалентными связями в углеродной цепи; количество атомов водорода, прикрепленных к углеродному скелету, максимально

крахмал: запасной углевод в растениях

стероид: тип липида, состоящего из четырех конденсированных углеводородных колец

транс-жиры: форма ненасыщенного жира с атомами водорода, соседствующими с двойной связью, напротив друг друга, а не на одной стороне двойной связи

триглицерид: молекула жира; состоит из трех жирных кислот, связанных с молекулой глицерина

ненасыщенная жирная кислота: длинноцепочечный углеводород, имеющий одну или несколько двойных связей в углеводородной цепи

Атрибуция в СМИ

Сравнение биологических макромолекул | Биология для майоров I

Обсудить биологические макромолекулы и различия между четырьмя классами

Как мы узнали, существует четыре основных класса биологических макромолекул:

  • Белки (полимеры аминокислот)
  • Углеводы (полимеры сахаров)
  • Липиды (полимеры липидных мономеров)
  • Нуклеиновые кислоты (ДНК и РНК; полимеры нуклеотидов)

Давайте подробнее рассмотрим различия между классами разности.

Цели обучения

  • Определите термин «макромолекула»
  • Различают 4 класса макромолекул

Теперь, когда мы обсудили четыре основных класса биологических макромолекул (углеводы, липиды, белки и нуклеиновые кислоты), давайте поговорим о макромолекулах в целом. Каждый из них является важным компонентом ячейки и выполняет широкий спектр функций. Вместе эти молекулы составляют большую часть сухой массы клетки (напомним, что вода составляет большую часть ее полной массы).Биологические макромолекулы являются органическими, то есть содержат углерод. Кроме того, они могут содержать водород, кислород, азот и дополнительные второстепенные элементы.

Ты то, что ешь

Сравнение биологических макромолекул

Макромолекула Базовая формула, ключевые характеристики Мономер Примеры использует
Белки ЧОН

−NH 2 + −COOH + R группа

Аминокислоты Ферменты, некоторые гормоны Хранение; Сигналы; Структурный; Сократительный; Оборонительный; Фермент; Транспорт; Рецепторы
Липиды С: Н: О

Более 2: 1 H: O (карбоксильная группа)

Жирные кислоты и глицерин Сливочное масло, масло, холестерин, пчелиный воск Накопитель энергии; Защита; Химические посланники; Отталкивать воду
Углеводы С: Н: О

1: 2: 1

Моносахариды Глюкоза, фруктоза, крахмал, гликоген, целлюлоза Накопитель энергии; Структура
Нуклеиновые кислоты ЧОНП

пентоза, азотистое основание, фосфат

Нуклеотиды ДНК, РНК Генетическая информация

Синтез дегидратации

Большинство макромолекул состоит из отдельных субъединиц или строительных блоков, называемых мономерами .Мономеры соединяются друг с другом с помощью ковалентных связей с образованием более крупных молекул, известных как полимеры . При этом мономеры выделяют молекулы воды в качестве побочных продуктов. Этот тип реакции известен как синтез дегидратации , что означает «объединить, теряя воду».

Рис. 1. В реакции синтеза дегидратации, изображенной выше, две молекулы глюкозы соединяются вместе с образованием дисахарида мальтозы. В процессе образуется молекула воды.

В реакции синтеза дегидратации (рис. 1) водород одного мономера соединяется с гидроксильной группой другого мономера, высвобождая молекулу воды.В то же время мономеры разделяют электроны и образуют ковалентные связи. По мере присоединения дополнительных мономеров эта цепочка повторяющихся мономеров образует полимер. Различные типы мономеров могут сочетаться во многих конфигурациях, давая начало разнообразной группе макромолекул. Даже один вид мономера может сочетаться различными способами с образованием нескольких различных полимеров: например, мономеры глюкозы являются составляющими крахмала, гликогена и целлюлозы.

Гидролиз

Полимеры распадаются на мономеры в процессе, известном как гидролиз, что означает «расщепление воды», реакция, в которой молекула воды используется во время разложения (рис. 2).Во время этих реакций полимер распадается на два компонента: одна часть получает атом водорода (H +), а другая — молекулу гидроксила (OH–) из расщепленной молекулы воды.

Рис. 2. В показанной здесь реакции гидролиза дисахарид мальтоза расщепляется с образованием двух мономеров глюкозы с добавлением молекулы воды. Обратите внимание, что эта реакция является обратной реакцией синтеза, показанной на рисунке 1.

Реакции дегидратации и гидролиза катализируются или «ускоряются» специфическими ферментами; реакции дегидратации включают образование новых связей, требующих энергии, в то время как реакции гидролиза разрывают связи и высвобождают энергию.Эти реакции аналогичны для большинства макромолекул, но реакция каждого мономера и полимера специфична для своего класса. Например, в нашем организме пища гидролизуется или расщепляется на более мелкие молекулы каталитическими ферментами в пищеварительной системе. Это позволяет легко усваивать питательные вещества клетками кишечника. Каждая макромолекула расщепляется определенным ферментом. Например, углеводы расщепляются амилазой, сахарозой, лактазой или мальтазой. Белки расщепляются ферментами пепсин и пептидаза, а также соляной кислотой.Липиды расщепляются липазами. Распад этих макромолекул дает энергию для клеточной деятельности.

Посетите этот сайт, чтобы увидеть визуальные представления синтеза и гидролиза при дегидратации.

Резюме: Сравнение биологических макромолекул

Белки, углеводы, нуклеиновые кислоты и липиды — это четыре основных класса биологических макромолекул — больших молекул, необходимых для жизни, которые построены из более мелких органических молекул. Макромолекулы состоят из отдельных звеньев, известных как мономеры, которые связаны ковалентными связями с образованием более крупных полимеров.Полимер — это больше, чем просто сумма его частей: он приобретает новые характеристики и приводит к осмотическому давлению, которое намного ниже того, которое создается его ингредиентами; это важное преимущество в поддержании осмотических условий клетки. Мономер соединяется с другим мономером с высвобождением молекулы воды, что приводит к образованию ковалентной связи. Эти типы реакций известны как реакции дегидратации или конденсации. Когда полимеры распадаются на более мелкие звенья (мономеры), молекула воды используется для каждой связи, разорванной в этих реакциях; такие реакции известны как реакции гидролиза.Реакции дегидратации и гидролиза аналогичны для всех макромолекул, но реакция каждого мономера и полимера специфична для своего класса. Реакции дегидратации обычно требуют затрат энергии для образования новых связей, в то время как реакции гидролиза обычно высвобождают энергию за счет разрыва связей.

Проверьте свое понимание

Ответьте на вопросы ниже, чтобы увидеть, насколько хорошо вы понимаете темы, затронутые в предыдущем разделе. В этой короткой викторине , а не засчитываются в вашу оценку в классе, и вы можете пересдавать ее неограниченное количество раз.

Используйте этот тест, чтобы проверить свое понимание и решить, следует ли (1) изучить предыдущий раздел дальше или (2) перейти к следующему разделу.

биологических молекул | BIO 101 Общая биология I

Цели обучения

К концу этого раздела вы сможете:

  • Опишите, почему углерод имеет решающее значение для жизни
  • Объясните влияние незначительных изменений аминокислот на организмы
  • Опишите четыре основных типа биологических молекул
  • Понимать функции четырех основных типов молекул

Большие молекулы, необходимые для жизни, которые состоят из более мелких органических молекул, называются биологическими макромолекулами.Существует четыре основных класса биологических макромолекул (углеводы, липиды, белки и нуклеиновые кислоты), каждый из которых является важным компонентом клетки и выполняет широкий спектр функций. Вместе эти молекулы составляют большую часть массы клетки. Биологические макромолекулы являются органическими, что означает, что они содержат углерод. Кроме того, они могут содержать водород, кислород, азот, фосфор, серу и дополнительные второстепенные элементы.

Часто говорят, что жизнь «основана на углероде.Это означает, что атомы углерода, связанные с другими атомами углерода или другими элементами, образуют фундаментальные компоненты многих, если не большинства, молекул, уникальных для живых существ. Другие элементы играют важную роль в биологических молекулах, но углерод определенно квалифицируется как элемент «фундамент» для молекул в живых существах. Это связывающие свойства атомов углерода, которые ответственны за его важную роль.

Рис. 1. Углерод может образовывать четыре ковалентные связи, образуя органическую молекулу.Самая простая молекула углерода — это метан (Ch5), изображенный здесь.

Углерод содержит четыре электрона в своей внешней оболочке. Следовательно, он может образовывать четыре ковалентные связи с другими атомами или молекулами. Простейшая молекула органического углерода — это метан (CH 4 ), в котором четыре атома водорода связаны с атомом углерода (рис. 1).

Однако более сложные конструкции изготавливаются с использованием углерода. Любой из атомов водорода может быть заменен другим атомом углерода, ковалентно связанным с первым атомом углерода.Таким образом могут быть образованы длинные и разветвленные цепи углеродных соединений (рис. 2a ). Атомы углерода могут связываться с атомами других элементов, таких как азот, кислород и фосфор (рис. 2b ). Молекулы также могут образовывать кольца, которые сами могут связываться с другими кольцами (рис. 2 c ). Это разнообразие молекулярных форм объясняет разнообразие функций биологических макромолекул и в значительной степени основано на способности углерода образовывать множественные связи с самим собой и другими атомами.

Рис. 2 Эти примеры показывают три молекулы (обнаруженные в живых организмах), которые содержат атомы углерода, различным образом связанные с другими атомами углерода и атомами других элементов. (а) Эта молекула стеариновой кислоты имеет длинную цепочку атомов углерода. (б) Глицин, компонент белков, содержит атомы углерода, азота, кислорода и водорода. (c) Глюкоза, сахар, имеет кольцо из атомов углерода и один атом кислорода.

Углеводы — это макромолекулы, с которыми большинство потребителей знакомо.Чтобы похудеть, некоторые люди придерживаются «низкоуглеводной» диеты. Спортсмены, напротив, часто «нагружают углеводы» перед важными соревнованиями, чтобы убедиться, что у них достаточно энергии для соревнований на высоком уровне. Фактически, углеводы являются неотъемлемой частью нашего рациона; злаки, фрукты и овощи — все это естественные источники углеводов. Углеводы обеспечивают организм энергией, особенно через глюкозу, простой сахар. Углеводы также выполняют другие важные функции у людей, животных и растений.

Углеводы можно представить формулой (CH 2 O) n , где n — количество атомов углерода в молекуле. Другими словами, соотношение углерода, водорода и кислорода в молекулах углеводов составляет 1: 2: 1. Углеводы подразделяются на три подтипа: моносахариды, дисахариды и полисахариды.

Моносахариды (моно- = «один»; sacchar- = «сладкий») представляют собой простые сахара, наиболее распространенным из которых является глюкоза.В моносахаридах количество атомов углерода обычно составляет от трех до шести. Большинство названий моносахаридов оканчиваются суффиксом -ose. В зависимости от количества атомов углерода в сахаре они могут быть известны как триозы (три атома углерода), пентозы (пять атомов углерода) и гексозы (шесть атомов углерода).

Моносахариды могут существовать в виде линейной цепи или кольцевых молекул; в водных растворах они обычно находятся в кольцевой форме.

Химическая формула глюкозы: C 6 H 12 O 6 .У большинства живых существ глюкоза является важным источником энергии. Во время клеточного дыхания из глюкозы выделяется энергия, которая используется для выработки аденозинтрифосфата (АТФ). Растения синтезируют глюкозу, используя углекислый газ и воду в процессе фотосинтеза, а глюкоза, в свою очередь, используется для удовлетворения потребностей растений в энергии. Избыток синтезированной глюкозы часто хранится в виде крахмала, который расщепляется другими организмами, питающимися растениями.

Рисунок 3.Глюкоза, галактоза и фруктоза являются изомерными моносахаридами, что означает, что они имеют одинаковую химическую формулу, но немного разные структуры.

Галактоза (входит в состав лактозы или молочного сахара) и фруктоза (содержится во фруктах) — другие распространенные моносахариды. Хотя глюкоза, галактоза и фруктоза имеют одинаковую химическую формулу (C 6 H 12 O 6 ), они различаются структурно и химически (и известны как изомеры) из-за разного расположения атомов в углеродной цепи. (Рисунок 3).

Дисахариды (ди- = «два») образуются, когда два моносахарида подвергаются реакции дегидратации (реакции, при которой происходит удаление молекулы воды). Во время этого процесса гидроксильная группа (–ОН) одного моносахарида соединяется с атомом водорода другого моносахарида, высвобождая молекулу воды (H 2 O) и образуя ковалентную связь между атомами в двух молекулах сахара.

Обычные дисахариды включают лактозу, мальтозу и сахарозу. Лактоза — это дисахарид, состоящий из мономеров глюкозы и галактозы.Он содержится в молоке. Мальтоза, или солодовый сахар, представляет собой дисахарид, образующийся в результате реакции дегидратации между двумя молекулами глюкозы. Наиболее распространенным дисахаридом является сахароза или столовый сахар, который состоит из мономеров глюкозы и фруктозы.

Длинная цепь моносахаридов, связанных ковалентными связями, известна как полисахарид (поли- = «много»). Цепь может быть разветвленной или неразветвленной, и она может содержать разные типы моносахаридов. Полисахариды могут быть очень большими молекулами.Крахмал, гликоген, целлюлоза и хитин являются примерами полисахаридов.

Крахмал — это хранимая в растениях форма сахаров, состоящая из амилозы и амилопектина (оба полимера глюкозы). Растения способны синтезировать глюкозу, а избыток глюкозы откладывается в виде крахмала в различных частях растений, включая корни и семена. Крахмал, который потребляется животными, расщепляется на более мелкие молекулы, такие как глюкоза. Затем клетки могут поглощать глюкозу.

Гликоген — это форма хранения глюкозы у людей и других позвоночных, состоящая из мономеров глюкозы.Гликоген является животным эквивалентом крахмала и представляет собой сильно разветвленную молекулу, обычно хранящуюся в клетках печени и мышц. Когда уровень глюкозы снижается, гликоген расщепляется с высвобождением глюкозы.

Целлюлоза — один из самых распространенных природных биополимеров. Клеточные стенки растений в основном состоят из целлюлозы, которая обеспечивает структурную поддержку клетки. Дерево и бумага в основном целлюлозные по своей природе. Целлюлоза состоит из мономеров глюкозы, которые связаны связями между определенными атомами углерода в молекуле глюкозы.

Каждый второй мономер глюкозы в целлюлозе переворачивается и плотно упаковывается в виде удлиненных длинных цепей. Это придает целлюлозе жесткость и высокую прочность на разрыв, что так важно для растительных клеток. Целлюлоза, проходящая через нашу пищеварительную систему, называется пищевыми волокнами. Хотя связи глюкозы и глюкозы в целлюлозе не могут быть разрушены пищеварительными ферментами человека, травоядные животные, такие как коровы, буйволы и лошади, способны переваривать траву, богатую целлюлозой, и использовать ее в качестве источника пищи.У этих животных определенные виды бактерий обитают в рубце (часть пищеварительной системы травоядных) и секретируют фермент целлюлазу. В аппендиксе также содержатся бактерии, которые расщепляют целлюлозу, что придает ей важную роль в пищеварительной системе жвачных животных. Целлюлазы могут расщеплять целлюлозу на мономеры глюкозы, которые могут использоваться животным в качестве источника энергии.

Углеводы выполняют другие функции у разных животных. У членистоногих, таких как насекомые, пауки и крабы, есть внешний скелет, называемый экзоскелетом, который защищает их внутренние части тела.Этот экзоскелет состоит из биологической макромолекулы хитина, азотистого углевода. Он состоит из повторяющихся единиц модифицированного сахара, содержащего азот.

Таким образом, из-за различий в молекулярной структуре углеводы могут выполнять самые разные функции хранения энергии (крахмал и гликоген), а также структурной поддержки и защиты (целлюлоза и хитин) (рис. 4).

Рис. 4. Хотя их структуры и функции различаются, все полисахаридные углеводы состоят из моносахаридов и имеют химическую формулу (Ch3O) n.

Карьера в действии

Зарегистрированный диетолог

Ожирение является проблемой здравоохранения во всем мире, и многие болезни, такие как диабет и болезни сердца, становятся все более распространенными из-за ожирения. Это одна из причин, почему к зарегистрированным диетологам все чаще обращаются за советом. Зарегистрированные диетологи помогают планировать пищевые продукты и программы питания для людей в различных условиях. Они часто работают с пациентами в медицинских учреждениях, разрабатывая планы питания для профилактики и лечения заболеваний.Например, диетологи могут научить пациента с диабетом контролировать уровень сахара в крови, употребляя в пищу правильные типы и количества углеводов. Диетологи также могут работать в домах престарелых, школах и частных клиниках.

Чтобы стать дипломированным диетологом, нужно получить как минимум степень бакалавра в области диетологии, питания, пищевых технологий или в смежных областях. Кроме того, зарегистрированные диетологи должны пройти программу стажировки под присмотром и сдать национальный экзамен. Те, кто занимается диетологией, проходят курсы по питанию, химии, биохимии, биологии, микробиологии и физиологии человека.Диетологи должны стать экспертами в химии и функциях пищи (белков, углеводов и жиров).

Рис. 5. Гидрофобные липиды в мехе водных млекопитающих, таких как речная выдра, защищают их от непогоды. (кредит: Кен Босма)

Липиды включают разнообразную группу соединений, объединенных общим признаком. Липиды гидрофобны («водобоязненные») или нерастворимы в воде, потому что они неполярные молекулы. Это потому, что они являются углеводородами, которые включают только неполярные углерод-углеродные или углерод-водородные связи.Липиды выполняют в клетке множество различных функций. Клетки хранят энергию для длительного использования в виде липидов, называемых жирами. Липиды также обеспечивают изоляцию растений и животных от окружающей среды. Например, они помогают водным птицам и млекопитающим оставаться сухими из-за их водоотталкивающих свойств. Липиды также являются строительными блоками многих гормонов и важной составляющей плазматической мембраны. Липиды включают жиры, масла, воски, фосфолипиды и стероиды.

Молекула жира, такая как триглицерид, состоит из двух основных компонентов — глицерина и жирных кислот.Глицерин — это органическое соединение с тремя атомами углерода, пятью атомами водорода и тремя гидроксильными (–OH) группами. Жирные кислоты имеют длинную цепь углеводородов, к которой присоединена кислая карбоксильная группа, отсюда и название «жирная кислота». Количество атомов углерода в жирной кислоте может составлять от 4 до 36; наиболее распространены те, которые содержат 12–18 атомов углерода. В молекуле жира жирная кислота присоединена к каждому из трех атомов кислорода в -ОН-группах молекулы глицерина ковалентной связью (рис. 6).

Рисунок 6.Липиды включают жиры, такие как триглицериды, которые состоят из жирных кислот и глицерина, фосфолипидов и стероидов.

Во время образования этой ковалентной связи высвобождаются три молекулы воды. Три жирные кислоты в жире могут быть похожими или разными. Эти жиры также называют триглицеридами, потому что они содержат три жирные кислоты. Некоторые жирные кислоты имеют общие названия, указывающие на их происхождение. Например, пальмитиновая кислота, насыщенная жирная кислота, получают из пальмы. Арахидовая кислота получена из Arachis hypogaea , научного названия арахиса.

Жирные кислоты могут быть насыщенными и ненасыщенными. В цепи жирной кислоты, если есть только одинарные связи между соседними атомами углерода в углеводородной цепи, жирная кислота является насыщенной. Насыщенные жирные кислоты насыщены водородом; другими словами, количество атомов водорода, прикрепленных к углеродному скелету, максимально.

Когда углеводородная цепь содержит двойную связь, жирная кислота является ненасыщенной жирной кислотой.

Большинство ненасыщенных жиров являются жидкими при комнатной температуре и называются маслами.Если в молекуле есть одна двойная связь, то он известен как мононенасыщенный жир (например, оливковое масло), а если имеется более одной двойной связи, то он известен как полиненасыщенный жир (например, масло канолы).

Насыщенные жиры плотно упаковываются и остаются твердыми при комнатной температуре. Животные жиры со стеариновой кислотой и пальмитиновой кислотой, содержащиеся в мясе, и жир с масляной кислотой, содержащиеся в масле, являются примерами насыщенных жиров. Млекопитающие хранят жиры в специализированных клетках, называемых адипоцитами, где жировые шарики занимают большую часть клетки.У растений жир или масло хранятся в семенах и используются в качестве источника энергии во время эмбрионального развития.

Ненасыщенные жиры или масла обычно растительного происхождения и содержат ненасыщенные жирные кислоты. Двойная связь вызывает изгиб или «перегиб», который препятствует плотной упаковке жирных кислот, сохраняя их в жидком состоянии при комнатной температуре. Оливковое масло, кукурузное масло, масло канолы и жир печени трески являются примерами ненасыщенных жиров. Ненасыщенные жиры помогают повысить уровень холестерина в крови, тогда как насыщенные жиры способствуют образованию бляшек в артериях, что увеличивает риск сердечного приступа.

Рис. 7. В процессе гидрогенизации ориентация двойных связей изменяется, в результате чего из цис-жира образуется транс-жир. Это изменяет химические свойства молекулы.

В пищевой промышленности масла искусственно гидрогенизируются для придания им полутвердого состояния, что приводит к меньшей порче и увеличению срока хранения. Проще говоря, газообразный водород пропускают через масла, чтобы отвердить их. Во время этого процесса гидрирования двойные связи цис -конформации в углеводородной цепи могут быть преобразованы в двойные связи в транс- -конформации.Это образует транс -жир из цис- -жира. Ориентация двойных связей влияет на химические свойства жира (рис. 7).

Маргарин, некоторые виды арахисового масла и шортенинг являются примерами искусственно гидрогенизированных транс -жиров. Недавние исследования показали, что увеличение транс -жиров в рационе человека может привести к увеличению уровня липопротеинов низкой плотности (ЛПНП) или «плохого» холестерина, что, в свою очередь, может привести к отложению бляшек в организме человека. артерии, что приводит к болезни сердца.Многие рестораны быстрого питания недавно отказались от использования транс -жиров, и теперь на американских этикетках продуктов питания требуется указывать их содержание транс -жиров.

Незаменимые жирные кислоты — это жирные кислоты, которые необходимы, но не синтезируются человеческим организмом. Следовательно, их необходимо дополнять с помощью диеты. Омега-3 жирные кислоты попадают в эту категорию и являются одной из двух известных незаменимых жирных кислот для человека (другая — омега-6 жирные кислоты). Они представляют собой тип полиненасыщенных жиров и называются омега-3 жирными кислотами, потому что третий углерод на конце жирной кислоты участвует в двойной связи.

Лосось, форель и тунец являются хорошими источниками жирных кислот омега-3. Жирные кислоты омега-3 важны для работы мозга, нормального роста и развития. Они также могут предотвратить сердечные заболевания и снизить риск рака.

Как и углеводы, жиры получили широкую огласку. Это правда, что чрезмерное употребление жареной и другой «жирной» пищи приводит к увеличению веса. Однако жиры выполняют важные функции. Жиры служат долгосрочным накопителем энергии. Они также обеспечивают изоляцию тела.Поэтому «здоровые» ненасыщенные жиры в умеренных количествах следует употреблять регулярно.

Фосфолипиды являются основным компонентом плазматической мембраны. Как и жиры, они состоят из цепей жирных кислот, прикрепленных к глицерину или подобной основной цепи. Однако вместо трех жирных кислот есть две жирные кислоты, а третий углерод глицериновой цепи связан с фосфатной группой. Фосфатная группа модифицируется добавлением спирта.

Фосфолипид имеет как гидрофобные, так и гидрофильные участки.Цепи жирных кислот гидрофобны и исключают себя из воды, тогда как фосфат гидрофильный и взаимодействует с водой.

Клетки окружены мембраной, которая имеет двойной слой фосфолипидов. Жирные кислоты фосфолипидов обращены внутрь, от воды, тогда как фосфатная группа может быть обращена либо к внешней среде, либо к внутренней части клетки, которые оба являются водными.

Стероиды и воски

В отличие от фосфолипидов и жиров, рассмотренных ранее, стероиды имеют кольцевую структуру.Хотя они не похожи на другие липиды, они сгруппированы с ними, потому что они также гидрофобны. Все стероиды имеют четыре связанных углеродных кольца, а некоторые из них, как и холестерин, имеют короткий хвост.

Холестерин — стероид. Холестерин в основном синтезируется в печени и является предшественником многих стероидных гормонов, таких как тестостерон и эстрадиол. Он также является предшественником витаминов Е и К. Холестерин является предшественником солей желчных кислот, которые помогают в расщеплении жиров и их последующем усвоении клетками.Хотя о холестерине часто говорят отрицательно, он необходим для правильного функционирования организма. Это ключевой компонент плазматических мембран клеток животных.

Воски состоят из углеводородной цепи со спиртовой (–OH) группой и жирной кислотой. Примеры восков животного происхождения включают пчелиный воск и ланолин. У растений также есть воск, например покрытие на листьях, которое помогает предотвратить их высыхание.

Концепция в действии Чтобы получить дополнительную информацию о липидах, исследуйте «Биомолекулы: Липиды» с помощью этой интерактивной анимации.

Белки являются одними из наиболее распространенных органических молекул в живых системах и обладают самым разнообразным набором функций среди всех макромолекул. Белки могут быть структурными, регуляторными, сократительными или защитными; они могут служить для транспортировки, хранения или перепонки; или они могут быть токсинами или ферментами. Каждая клетка живой системы может содержать тысячи различных белков, каждый из которых выполняет уникальную функцию. Их структуры, как и их функции, сильно различаются. Однако все они представляют собой полимеры аминокислот, расположенных в линейной последовательности.

Функции белков очень разнообразны, потому что существует 20 различных химически различных аминокислот, которые образуют длинные цепи, и аминокислоты могут располагаться в любом порядке. Например, белки могут функционировать как ферменты или гормоны. Ферменты, которые вырабатываются живыми клетками, являются катализаторами биохимических реакций (например, пищеварения) и обычно являются белками. Каждый фермент специфичен для субстрата (реагента, который связывается с ферментом), на который он действует. Ферменты могут разрушать молекулярные связи, переупорядочивать связи или образовывать новые связи.Примером фермента является амилаза слюны, которая расщепляет амилозу, компонент крахмала.

Гормоны — это химические сигнальные молекулы, обычно белки или стероиды, секретируемые эндокринной железой или группой эндокринных клеток, которые контролируют или регулируют определенные физиологические процессы, включая рост, развитие, метаболизм и размножение. Например, инсулин — это белковый гормон, который поддерживает уровень глюкозы в крови.

Рис. 8. Аминокислоты состоят из центрального углерода, связанного с аминогруппой (–Nh3), карбоксильной группой (–COOH) и атомом водорода.Четвертая связь центрального углерода варьируется среди различных аминокислот, как видно из этих примеров аланина, валина, лизина и аспарагиновой кислоты.

Белки имеют разную форму и молекулярную массу; некоторые белки имеют глобулярную форму, тогда как другие имеют волокнистую природу. Например, гемоглобин — это глобулярный белок, а коллаген, обнаруженный в нашей коже, — это волокнистый белок. Форма белка имеет решающее значение для его функции. Изменения температуры, pH и воздействие химикатов могут привести к необратимым изменениям формы белка, что приведет к потере функции или денатурации (более подробно это будет обсуждаться позже).Все белки состоят из 20 одних и тех же аминокислот по-разному.

Аминокислоты — это мономеры, из которых состоят белки. Каждая аминокислота имеет одинаковую фундаментальную структуру, которая состоит из центрального атома углерода, связанного с аминогруппой (–NH 2 ), карбоксильной группы (–COOH) и атома водорода. Каждая аминокислота также имеет другой вариабельный атом или группу атомов, связанных с центральным атомом углерода, известную как группа R. Группа R — единственное различие в структуре между 20 аминокислотами; в остальном аминокислоты идентичны (рис. 8).

Химическая природа группы R определяет химическую природу аминокислоты в ее белке (то есть, является ли она кислотной, основной, полярной или неполярной).

Последовательность и количество аминокислот в конечном итоге определяют форму, размер и функцию белка. Каждая аминокислота присоединена к другой аминокислоте ковалентной связью, известной как пептидная связь, которая образуется в результате реакции дегидратации. Карбоксильная группа одной аминокислоты и аминогруппа второй аминокислоты объединяются, высвобождая молекулу воды.Полученная связь представляет собой пептидную связь.

Продукты, образованные такой связью, называются полипептидами. Хотя термины полипептид и белок иногда используются взаимозаменяемо, полипептид технически представляет собой полимер аминокислот, тогда как термин белок используется для полипептида или полипептидов, которые объединились вместе, имеют различную форму и имеют уникальную функцию.

Эволюция в действии

Эволюционное значение цитохрома c

Цитохром c — важный компонент молекулярного механизма, который извлекает энергию из глюкозы.Поскольку роль этого белка в производстве клеточной энергии имеет решающее значение, за миллионы лет он очень мало изменился. Секвенирование белков показало, что существует значительное сходство последовательностей между молекулами цитохрома с разных видов; эволюционные отношения можно оценить путем измерения сходства или различий между белковыми последовательностями различных видов.

Например, ученые определили, что цитохром с человека содержит 104 аминокислоты. Для каждой молекулы цитохрома с, которая к настоящему времени была секвенирована у разных организмов, 37 из этих аминокислот находятся в одном и том же положении в каждом цитохроме с.Это указывает на то, что все эти организмы произошли от общего предка. При сравнении последовательностей белков человека и шимпанзе различий в последовательностях не обнаружено. При сравнении последовательностей человека и макаки-резуса было обнаружено единственное различие в одной аминокислоте. Напротив, сравнение человека и дрожжей показывает разницу в 44 аминокислотах, предполагая, что люди и шимпанзе имеют более недавнего общего предка, чем люди и макака-резус или люди и дрожжи.

Структура белка

Как обсуждалось ранее, форма белка имеет решающее значение для его функции.Чтобы понять, как белок приобретает свою окончательную форму или конформацию, нам необходимо понять четыре уровня структуры белка: первичный, вторичный, третичный и четвертичный (рис. 8).

Уникальная последовательность и количество аминокислот в полипептидной цепи — это ее первичная структура. Уникальная последовательность каждого белка в конечном итоге определяется геном, кодирующим этот белок. Любое изменение в последовательности гена может привести к добавлению другой аминокислоты к полипептидной цепи, вызывая изменение структуры и функции белка.При серповидно-клеточной анемии β-цепь гемоглобина имеет единственную аминокислотную замену, вызывающую изменение как структуры, так и функции белка. Что наиболее примечательно, так это то, что молекула гемоглобина состоит из двух альфа-цепей и двух бета-цепей, каждая из которых состоит примерно из 150 аминокислот. Таким образом, молекула содержит около 600 аминокислот. Структурная разница между нормальной молекулой гемоглобина и молекулой серповидноклеточных клеток, которая резко снижает продолжительность жизни, состоит в одной из 600 аминокислот.

Из-за этого изменения одной аминокислоты в цепи обычно двояковогнутые или дискообразные эритроциты принимают форму полумесяца или «серпа», что закупоривает артерии. Это может привести к множеству серьезных проблем со здоровьем, таких как одышка, головокружение, головные боли и боли в животе у людей, страдающих этим заболеванием.

Паттерны сворачивания, возникающие в результате взаимодействий между частями аминокислот, не относящихся к R-группам, приводят к вторичной структуре белка. Наиболее распространены альфа (α) -спиральные и бета (β) -пластинчатые листовые структуры.Обе структуры удерживаются в форме водородными связями. В альфа-спирали связи образуются между каждой четвертой аминокислотой и вызывают поворот аминокислотной цепи.

В β-складчатом листе «складки» образованы водородными связями между атомами в основной цепи полипептидной цепи. Группы R прикреплены к атомам углерода и проходят выше и ниже складок складки. Гофрированные сегменты выровнены параллельно друг другу, а водородные связи образуются между одинаковыми парами атомов на каждой из выровненных аминокислот.Структуры α-спирали и β-складчатых листов обнаруживаются во многих глобулярных и волокнистых белках.

Уникальная трехмерная структура полипептида известна как его третичная структура. Эта структура вызвана химическим взаимодействием между различными аминокислотами и участками полипептида. Прежде всего, взаимодействия между группами R создают сложную трехмерную третичную структуру белка. Могут быть ионные связи, образованные между группами R на разных аминокислотах, или водородные связи, помимо тех, которые участвуют во вторичной структуре.Когда происходит сворачивание белка, гидрофобные группы R неполярных аминокислот лежат внутри белка, тогда как гидрофильные группы R лежат снаружи. Первые типы взаимодействий также известны как гидрофобные взаимодействия.

В природе некоторые белки образованы из нескольких полипептидов, также известных как субъединицы, и взаимодействие этих субъединиц образует четвертичную структуру. Слабые взаимодействия между субъединицами помогают стабилизировать общую структуру. Например, гемоглобин представляет собой комбинацию четырех полипептидных субъединиц.

Рис. 9. На этих иллюстрациях можно увидеть четыре уровня белковой структуры. (кредит: модификация работы Национального исследовательского института генома человека)

Каждый белок имеет свою уникальную последовательность и форму, удерживаемую химическими взаимодействиями. Если белок подвержен изменениям температуры, pH или воздействию химикатов, структура белка может измениться, потеряв свою форму в результате так называемой денатурации, как обсуждалось ранее. Денатурация часто обратима, поскольку первичная структура сохраняется, если денатурирующий агент удаляется, позволяя белку возобновить свою функцию.Иногда денатурация необратима, что приводит к потере функции. Один из примеров денатурации белка можно увидеть, когда яйцо жарят или варят. Белок альбумина в жидком яичном белке денатурируется при помещении на горячую сковороду, превращаясь из прозрачного вещества в непрозрачное белое вещество. Не все белки денатурируются при высоких температурах; например, бактерии, которые выживают в горячих источниках, имеют белки, которые адаптированы для работы при этих температурах.

Концепция в действии

Чтобы получить дополнительную информацию о белках, исследуйте «Биомолекулы: Белки» с помощью этой интерактивной анимации.

Нуклеиновые кислоты являются ключевыми макромолекулами в непрерывности жизни. Они несут генетический план клетки и несут инструкции для функционирования клетки.

Двумя основными типами нуклеиновых кислот являются дезоксирибонуклеиновая кислота (ДНК) и рибонуклеиновая кислота (РНК). ДНК — это генетический материал, содержащийся во всех живых организмах, от одноклеточных бактерий до многоклеточных млекопитающих.

Другой тип нуклеиновой кислоты, РНК, в основном участвует в синтезе белка.Молекулы ДНК никогда не покидают ядро, а вместо этого используют посредника РНК для связи с остальной частью клетки. Другие типы РНК также участвуют в синтезе белка и его регуляции.

ДНК и РНК состоят из мономеров, известных как нуклеотиды. Нуклеотиды объединяются друг с другом с образованием полинуклеотида, ДНК или РНК. Каждый нуклеотид состоит из трех компонентов: азотистого основания, пентозного (пятиуглеродного) сахара и фосфатной группы (рис. 10). Каждое азотистое основание в нуклеотиде присоединено к молекуле сахара, которая присоединена к фосфатной группе.

Рис. 10. Нуклеотид состоит из трех компонентов: азотистого основания, пентозного сахара и фосфатной группы.

Другой тип нуклеиновой кислоты, РНК, в основном участвует в синтезе белка. Молекулы ДНК никогда не покидают ядро, а вместо этого используют посредника РНК для связи с остальной частью клетки. Другие типы РНК также участвуют в синтезе белка и его регуляции.

ДНК и РНК состоят из мономеров, известных как нуклеотиды. Нуклеотиды объединяются друг с другом с образованием полинуклеотида, ДНК или РНК.Каждый нуклеотид состоит из трех компонентов: азотистого основания, пентозного (пятиуглеродного) сахара и фосфатной группы (рис. 10). Каждое азотистое основание в нуклеотиде присоединено к молекуле сахара, которая присоединена к фосфатной группе.

Рис. 11. Модель двойной спирали показывает ДНК как две параллельные нити переплетающихся молекул. (кредит: Джером Уокер, Деннис Мытс)

ДНК

имеет двойную спиральную структуру (рис. 11). Он состоит из двух цепей или полимеров нуклеотидов.Нити образованы связями между фосфатными и сахарными группами соседних нуклеотидов. Нити связаны друг с другом в своих основаниях водородными связями, и нити наматываются друг на друга по своей длине, отсюда и описание «двойной спирали», что означает двойную спираль.

Чередующиеся сахарные и фосфатные группы лежат на внешней стороне каждой цепи, образуя основу ДНК. Азотистые основания сложены внутри, как ступени лестницы, и эти основания соединяются в пару; пары связаны друг с другом водородными связями.Основания спариваются таким образом, чтобы расстояние между скелетами двух цепей было одинаковым по всей длине молекулы.

Сводка раздела

Живые существа основаны на углероде, потому что углерод играет такую ​​важную роль в химии живых существ. Четыре позиции ковалентной связи атома углерода могут дать начало широкому разнообразию соединений с множеством функций, что объясняет важность углерода для живых существ. Углеводы — это группа макромолекул, которые являются жизненно важным источником энергии для клетки, обеспечивают структурную поддержку многих организмов и могут быть обнаружены на поверхности клетки в качестве рецепторов или для распознавания клеток.Углеводы классифицируются как моносахариды, дисахариды и полисахариды, в зависимости от количества мономеров в молекуле.

Липиды — это класс макромолекул, которые по своей природе неполярны и гидрофобны. Основные типы включают жиры и масла, воски, фосфолипиды и стероиды. Жиры и масла представляют собой запасенную форму энергии и могут включать триглицериды. Жиры и масла обычно состоят из жирных кислот и глицерина.

Белки — это класс макромолекул, которые могут выполнять широкий спектр функций для клетки.Они помогают метаболизму, обеспечивая структурную поддержку и действуя как ферменты, переносчики или гормоны. Строительными блоками белков являются аминокислоты. Белки организованы на четырех уровнях: первичный, вторичный, третичный и четвертичный. Форма и функция белка неразрывно связаны; любое изменение формы, вызванное изменениями температуры, pH или химического воздействия, может привести к денатурации белка и потере функции.

Нуклеиновые кислоты — это молекулы, состоящие из повторяющихся единиц нуклеотидов, которые направляют клеточную деятельность, такую ​​как деление клеток и синтез белка.Каждый нуклеотид состоит из пентозного сахара, азотистого основания и фосфатной группы. Есть два типа нуклеиновых кислот: ДНК и РНК.

Дополнительные упражнения для самопроверки

1. Объясните, по крайней мере, три функции, которые липиды выполняют у растений и / или животных.

2. Объясните, что происходит, если в полипептидной цепи даже одна аминокислота заменяется другой. Приведите конкретный пример.

ответов

1. Жир служит для животных ценным способом сохранения энергии.Он также может обеспечить изоляцию. Фосфолипиды и стероиды — важные компоненты клеточных мембран.

2. Изменение последовательности гена может привести к добавлению другой аминокислоты к полипептидной цепи вместо нормальной. Это вызывает изменение структуры и функции белка. Например, при серповидно-клеточной анемии β-цепь гемоглобина имеет единственную аминокислотную замену. Из-за этого изменения дискообразные эритроциты принимают форму полумесяца, что может привести к серьезным проблемам со здоровьем.

ГЛОССАРИЙ

структура альфа-спирали (α-спираль) тип вторичной структуры белков, образованный сворачиванием полипептида в форму спирали с водородными связями, стабилизирующими структуру

аминокислоты мономера белка; имеет центральный углерод или альфа-углерод, к которому присоединены аминогруппа, карбоксильная группа, водород и R-группа или боковая цепь; группа R различна для всех 20 аминокислот

бета-складчатый лист (β-складчатый) вторичная структура, обнаруженная в белках, в которой «складки» образованы водородными связями между атомами в основной цепи полипептидной цепи

углевод биологическая макромолекула, в которой отношение углерода к водороду и к кислороду составляет 1: 2: 1; углеводы служат источниками энергии и структурной поддержкой в ​​клетках и образуют клеточный экзоскелет членистоногих

целлюлоза полисахарид, составляющий клеточную стенку растений; обеспечивает структурную поддержку ячейки

шаперон (также шаперонин) белок, который помогает возникающему белку в процессе сворачивания

хитин тип углеводов, образующий внешний скелет всех членистоногих, включая ракообразных и насекомых; он также образует клеточные стенки грибов

денатурация потеря формы белка в результате изменений температуры, pH или воздействия химических веществ

дисахарид два мономера сахара, которые связаны вместе гликозидной связью

фермент катализатор в биохимической реакции, который обычно представляет собой сложный или конъюгированный белок

гликоген запасной углевод у животных

гликозидная связь связь, образованная реакцией дегидратации между двумя моносахаридами с отщеплением молекулы воды

гормон химическая сигнальная молекула, обычно белок или стероид, секретируемая эндокринными клетками, которые контролируют или регулируют определенные физиологические процессы

липид макромолекула, неполярная и нерастворимая в воде

моносахарид отдельное звено или мономер углеводов

омега-жир тип полиненасыщенных жиров, необходимых организму; нумерация углеродного омега начинается с метильного конца или конца, наиболее удаленного от карбонового конца

пептидная связь связь, образованная между двумя аминокислотами в результате реакции дегидратации

фосфолипид основной компонент мембран; состоит из двух жирных кислот и фосфатсодержащей группы, присоединенной к основной цепи глицерина

полипептид длинная цепь аминокислот, связанных пептидными связями

полисахарид длинная цепь моносахаридов; могут быть разветвленными и неразветвленными

первичная структура линейная последовательность аминокислот в белке

белок биологическая макромолекула, состоящая из одной или нескольких цепочек аминокислот

четвертичная структура ассоциация дискретных полипептидных субъединиц в белке

насыщенная жирная кислота длинная цепь углеводорода с одинарными ковалентными связями в углеродной цепи; количество атомов водорода, прикрепленных к углеродному скелету, максимально

вторичная структура регулярная структура, образованная белками за счет внутримолекулярной водородной связи между атомом кислорода одного аминокислотного остатка и водородом, присоединенным к атому азота другого аминокислотного остатка

крахмал запасные углеводы в растениях

стероид тип липида, состоящий из четырех конденсированных углеводородных колец, образующих плоскую структуру

третичная структура трехмерная конформация белка, включая взаимодействия между вторичными структурными элементами; образуется в результате взаимодействия между боковыми цепями аминокислот

транс-жир жир, образованный искусственно путем гидрогенизации масел, приводящий к другому расположению двойных связей, чем те, которые содержатся в природных липидах

триацилглицерин (также триглицерид) молекула жира; состоит из трех жирных кислот, связанных с молекулой глицерина

ненасыщенная жирная кислота длинноцепочечный углеводород, имеющий одну или несколько двойных связей в углеводородной цепи

воск липид, состоящий из длинноцепочечной жирной кислоты, этерифицированной до длинноцепочечного спирта; служит защитным покрытием на некоторых перьях, мехе водных млекопитающих и листьях

Биологические строительные блоки | CancerQuest

Клетка — основная единица жизни.Все организмы состоят из одной или нескольких клеток. Как будет показано ниже, люди состоят из многих миллионов клеток. Чтобы понять, что происходит при раке, важно понимать, как работают нормальные клетки. Первый шаг — обсудить структуру и основные функции клеток.

Сначала мы познакомимся с общими строительными блоками ячеек. Все клетки, независимо от их функции или расположения в организме, имеют общие черты и процессы. Удивительно, но клетки почти полностью состоят всего из четырех основных типов молекул.Выше показана клетка, окруженная примерами этих молекул строительных блоков.

Поскольку они присутствуют в живых существах, эти строительные блоки называются биомолекулами. В следующих разделах описываются структуры и функции каждого из этих основных строительных блоков. Дополнительную информацию по темам на этой странице также можно найти в большинстве вводных учебников по биологии, мы рекомендуем «Биология Кэмпбелла», 11-е издание.

Углеводы

Первый класс биомолекул, который мы обсудим, — это углеводы.Эти молекулы состоят из элементов углерода (C), водорода (H) и кислорода (O). Обычно эти молекулы известны как сахара . Углеводы могут иметь размер от очень маленького до очень большого. Как и все другие биомолекулы, углеводы часто выстраиваются в длинные цепочки, связывая вместе более мелкие единицы. Это похоже на добавление бусин к браслету, чтобы сделать его длиннее. Общий термин для отдельного элемента или шарика — это мономер . Термин для длинной цепочки мономеров — это полимер .

Примеры углеводов включают сахара, содержащиеся в молоке (лактоза) и столовый сахар (сахароза). Ниже представлена ​​структура мономера сахара глюкозы, основного источника энергии для нашего тела.

Сфера Палка Поверхность Повернуть

Углеводы выполняют в клетках несколько функций. Они являются отличным источником энергии для множества различных процессов, происходящих в наших клетках. Некоторые углеводы могут иметь структурную функцию.Например, материал, который заставляет растения стоять высоко и придает дереву жесткие свойства, представляет собой полимерную форму глюкозы, известную как целлюлоза. Другие типы сахарных полимеров составляют запасенные формы энергии, известные как крахмал и гликоген. Крахмал содержится в растительных продуктах, таких как картофель, а гликоген — в животных. Ниже показана короткая молекула гликогена. Вы можете сами манипулировать молекулой, чтобы хорошо рассмотреть.

Палка Линия Заполнение пространства Повернуть

Углеводы необходимы клеткам для взаимодействия друг с другом.Они также помогают клеткам прилипать друг к другу и к материалу, окружающему клетки в организме. Способность организма защищаться от вторжения микробов и удаления инородных материалов из тела (например, улавливание пыли и пыльцы слизью в носу и горле) также зависит от свойств углеводов.

Узнайте больше о том, как доктор Майкл Пирс использует углеводы для исследования рака.

Белки

Как и углеводы, белки состоят из более мелких единиц.Мономеры, из которых состоят белки, называются аминокислотами . Существует около двадцати различных аминокислот. Структура простейшей аминокислоты, глицина, показана ниже.

Сфера Палка Повернуть

Белки выполняют многочисленные функции в живых организмах, включая следующие:

  • Они помогают формировать многие структурные элементы тела, включая волосы, ногти и мышцы.Белки являются основным структурным компонентом клеток и клеточных мембран.
  • Они помогают транспортировать материалы через клеточные мембраны. Примером может служить захват глюкозы клетками из кровотока. Мы вернемся к этой важной способности, когда обсудим устойчивость раковых клеток к химиотерапевтическим агентам.
  • Они действуют как биологические катализаторы. Большая группа белков, известных как ферменты, способна ускорять химические реакции, необходимые для правильной работы клеток.Например, существует множество ферментов, которые участвуют в расщеплении пищи, которую мы едим, и обеспечении доступности питательных веществ.
  • Взаимодействия между клетками очень важны для поддержания организации и функционирования клеток и органов. Белки часто отвечают за поддержание контакта между соседними клетками и между клетками и их локальной средой. Хорошим примером могут служить взаимодействия клетки: клетки, которые удерживают клетки нашей кожи вместе. Эти взаимодействия зависят от белков соседних клеток, которые плотно связываются друг с другом.Как мы увидим, изменения в этих взаимодействиях необходимы для развития метастатического рака.
  • Белки контролируют активность клеток, включая решения относительно деления клеток. Раковые клетки неизменно имеют дефекты в этих типах белков. Мы вернемся к этим белкам более подробно, когда будем говорить о регуляции деления клеток.
  • Многие гормоны, сигналы, которые проходят по телу и изменяют поведение клеток и органов, состоят из белка.Ниже показан инсулин, небольшой белковый гормон, регулирующий усвоение глюкозы из кровотока.

Заполнение пространства Лента Проволочная рама Повернуть

Липиды

Термин липид относится к широкому спектру биомолекул, включая жиры, масла, воски и стероидные гормоны. Независимо от их структуры, местоположения или функции в клетке / теле, все липиды имеют общие черты, которые позволяют группировать их вместе.

  • Не растворяются в воде; они гидрофобны.
  • Как и углеводы, они состоят в основном из углерода, водорода и кислорода.

Гидрофобная природа липидов обуславливает многие их применения в биологических системах. Жиры являются хорошим источником накопленной энергии, а масла и воски используются для образования защитных слоев на нашей коже, предотвращая заражение. Некоторые липиды, стероидные гормоны, являются важными регуляторами клеточной активности. Мы вернемся к этому во время обсуждения информационного потока в ячейках.Активность стероидных гормонов, таких как эстроген, связана с раком женской репродуктивной системы. Процедуры, основанные на этих знаниях, будут подробно обсуждаться в разделе лечения на сайте.

Заполнение пространства Палка Проволочная рама Повернуть

Изображенный выше пример триацилглицерина или жира. Три длинные цепи состоят только из углерода и водорода, что придает молекуле гидрофобные свойства.Когда вы читаете о содержании насыщенных и ненасыщенных жиров на этикетке пищевых продуктов, они имеют в виду различия в этих длинных углеводородных цепях.

Основная функция липидов — образование биологических мембран. Клетки окружены тонким слоем липидов. Слой состоит из липидов особого типа, которые обладают как гидрофобными, так и гидрофильными свойствами. Гидрофильные концы этих молекул обращены к заполненной водой среде внутри клеток и водной среде вне клеток.Внутри двух слоев существует гидрофобная область. Мембрана, окружающая клетки, богата белками и другими липидами, такими как холестерин.

Большинство химических веществ не могут проникать через липидный бислой. Вода и некоторые другие небольшие молекулы могут свободно проходить через мембрану, в то время как другие молекулы должны активно транспортироваться через белковые каналы, встроенные в мембрану. Мембраны также содержат комбинацию биомолекул, которые были описаны до сих пор. Как видно выше, белки могут быть связаны с углеводами с образованием гликопротеинов.Гликопротеины играют важную роль в клетке: клеточные взаимодействия обсуждались ранее, и изменения количества или типов этих белков наблюдаются при раке. Точно так же комбинация липидов и углеводов приводит к образованию гликолипидов.

Нуклеиновые кислоты

Вся информация, необходимая для управления и построения клеток, хранится в этих молекулах.

Существует два основных типа нуклеиновых кислот: дезоксирибонуклеиновая кислота (ДНК) и рибонуклеиновая кислота (РНК).Обе эти молекулы являются полимерами. Они состоят из мономерных субъединиц, подобных ранее описанным углеводам и белкам. Мономеры, используемые для создания нуклеиновых кислот, называются нуклеотидами. Нуклеотиды часто обозначаются однобуквенными сокращениями A, C, G, T и U. Как и все мономеры, описанные до сих пор, мономеры, используемые для построения ДНК, похожи друг на друга, но не совсем похожи. Одно из различий между ДНК и РНК — это подмножество нуклеотидов, используемых для создания полимеров.ДНК содержит A, C, G и T, в то время как РНК содержит A, C, G и U.

Дезоксирибонуклеиновая кислота (ДНК)

ДНК

состоит из двух длинных цепочек (полимеров) нуклеотидов, скрученных друг вокруг друга и образующих спиральную или спиральную структуру, показанную ниже. Скрученные молекулы расположены определенным образом, причем определенные нуклеотиды всегда находятся напротив друг друга. Нуклеотид, содержащий аденин (A), всегда соединяется с нуклеотидом, содержащим тимин (T).Точно так же гуанин (G) всегда соединяется с цитозином (C). Если вы внимательно посмотрите на график ниже, вы увидите, что пары нуклеотидов взаимодействуют в середине спирали. Полимеры, образующие ДНК, могут быть очень длинными, достигая миллионов нуклеотидов на каждую отдельную молекулу ДНК. На следующем рисунке изображена короткая цепь двухцепочечной ДНК.

Сфера Палка Поверхность Повернуть

ДНК

находится в ядре клетки, структура которой будет описана в следующем разделе сайта.Все ядерные клетки человеческого тела имеют одинаковое содержание ДНК независимо от их функции. Разница в том, какие части ДНК используются в той или иной клетке. Например, клетки, из которых состоит печень, содержат ту же ДНК, что и клетки, из которых состоят мышцы. Резко различающиеся активности этих двух типов клеток зависят от участков ДНК, которые активны в клетках. ДНК — это форма хранения генетической информации, которая действует как образец для клеток. Как мы увидим, изменения в последовательности ДНК могут приводить к изменениям в поведении клеток.Нерегулируемый рост, а также многие другие изменения, наблюдаемые при раке, в конечном итоге являются результатом мутаций, изменений в структуре ДНК.

Рибонуклеиновая кислота

Рибонуклеиновая кислота (РНК) во многом похожа на ДНК. Это полимер нуклеотидов, который несет информацию, содержащуюся в генах. Помимо некоторых химических различий между РНК и ДНК, существуют важные функциональные различия.

  • РНК копируется из ДНК в ядре, и большая часть ее отправляется в цитозоль.
  • РНК — это рабочая форма информации, хранящейся в ДНК.
  • РНК одноцепочечная, а не двухцепочечная

Информация, хранящаяся в ДНК, работает для клеток так же, как архитектор использует план. Конкретное производство РНК позволяет клетке использовать только те страницы «плана», которые требуются в любой конкретный момент. Очень важно производить правильные РНК в правильное время. При раке производство или регуляция определенных РНК не происходит должным образом.Точно так же, как неправильное прочтение чертежа вызовет дефекты в здании, неправильное производство РНК вызывает изменения в поведении клеток, которые могут привести к раку. Эта важная тема будет подробно рассмотрена в разделе, посвященном функции генов. Сначала мы исследуем более сложные формы биомолекул, а затем познакомимся с некоторыми ключевыми функциональными компонентами эукариотических клеток.

Комбинации

Теперь мы познакомились с основными классами биомолекул.

  • углеводы
  • липидов
  • белков
  • нуклеиновых кислот

Эти биомолекулы работают вместе, чтобы выполнять определенные функции и создавать важные структурные особенности клеток. Например, в разделе, посвященном липидам, мы впервые увидели схему мембраны ниже.

Помимо липидного бислоя, состоящего из липидов особого типа, мембрана содержит множество белков и сахаров. Как показано, белки и сахара можно комбинировать с образованием гликопротеинов.К липидам также можно добавлять сахара для образования гликолипидов.

Многие из белков, которые важны для развития и / или выявления рака, являются гликопротеинами. Например, диагностические тесты на рак простаты включают тестирование образцов крови на наличие гликопротеина, называемого специфическим антигеном простаты или ПСА. Рак яичников можно контролировать по выработке другого гликопротеина, называемого СА-125. CA означает связанный с раком.

Подробнее о тесте CA-125

Часто многие белки и другие биомолекулы соединяются вместе, образуя функциональные структуры в клетках.Далее мы исследуем некоторые из этих более сложных структур, называемых органеллами.

Сводка

Все живые существа, включая клетки, составляющие человеческое тело, состоят из небольшого подмножества различных биомолекул. Существует четыре основных класса, как описано ниже:

  1. Углеводы
    • Углеводы состоят из элементов углерода (C), водорода (H) и кислорода (O).
    • Сахар — это обычные углеводы.
    • Углеводы внутри клеток выполняют несколько функций:
      • Основной источник энергии
      • Обеспечить структуру
      • Связь
      • Клеточная адгезия
      • Защита от посторонних предметов и удаление посторонних предметов
  2. Белки
    • Белки состоят из аминокислот.
    • Белки выполняют в живых организмах несколько функций:
      • Структура волос, мышц, ногтей, компонентов клеток и клеточных мембран
      • Транспортировка клеток
      • Биологические катализаторы или ферменты
      • Поддержание сотового контакта
      • Контрольная активность клеток
      • Передача сигналов через гормоны
  3. Липиды
    • Широкий спектр биомолекул, включая жиры, масла, воски и стероидные гормоны.
    • Липиды не растворяются в воде (они гидрофобны) и в основном состоят из углерода (C), водорода (H) и кислорода (O).
    • Липиды выполняют несколько функций в живых организмах:
      • Формы биологических мембран
      • Жиры могут храниться в качестве источника энергии
      • Масла и воски обеспечивают защиту путем покрытия участков, которые могут быть поражены микробами (например, кожа или уши)
      • Стероидные гормоны регулируют активность клеток, изменяя экспрессию генов
  4. Нуклеиновые кислоты
    • Вся информация, необходимая для управления и построения клеток, хранится в этих молекулах.
    • Нуклеиновые кислоты состоят из нуклеотидов, обозначенных аббревиатурой A, C, G, T и U.
    • Существует два основных типа нуклеиновых кислот, дезоксирибонуклеиновая кислота (ДНК) и рибонуклеиновая кислота (РНК):
      • ДНК
        • ДНК имеет структуру двойной спирали, состоящей из нуклеотидов A, C, G и T.
        • ДНК
        • находится в ядре клетки.
        • ДНК — это форма хранения генетической информации.
      • РНК
        • РНК обычно одноцепочечная и состоит из нуклеотидов A, G, C и U.
        • РНК скопирована с ДНК и является рабочей формой информации.
        • РНК производится в ядре, а мРНК экспортируется в цитозоль.

Дополнительные биомолекулы можно получить, комбинируя эти четыре типа. Например, многие белки модифицируются путем добавления углеводных цепей. Конечный продукт называется гликопротеином.

Если материал окажется для вас полезным, то разместите ссылку на наш веб-сайт.

3.2 Углеводы — Биология для курсов AP®

Цели обучения

К концу этого раздела вы сможете:

  • Какова роль углеводов в клетках и во внеклеточном материале животных и растений?
  • Какие существуют классификации углеводов?
  • Как моносахаридные строительные блоки собираются в дисахариды и сложные полисахариды?

Соединение для курсов AP

®

Углеводы обеспечивают энергией клетки и поддерживают структуру растений, грибов и членистоногих, таких как насекомые, пауки и ракообразные.Состоящие из углерода, водорода и кислорода в соотношении CH 2 O или углерода, гидратированного водой, углеводы классифицируются как моносахариды, дисахариды и полисахариды в зависимости от количества мономеров в макромолекуле. Моносахариды связаны гликозидными связями, которые образуются в результате дегидратационного синтеза. Глюкоза, галактоза и фруктоза — обычные изомерные моносахариды, тогда как сахароза или столовый сахар — дисахариды. Примеры полисахаридов включают целлюлозу и крахмал в растениях и гликоген у животных.Хотя хранение глюкозы в виде полимеров, таких как крахмал или гликоген, делает ее менее доступной для метаболизма, это предотвращает ее утечку из клеток или создание высокого осмотического давления, которое может вызвать чрезмерное поглощение воды клеткой. У насекомых жесткий внешний скелет из хитина, уникального азотсодержащего полисахарида.

Представленная информация и примеры, выделенные в разделе, поддерживают концепции и цели обучения, изложенные в Большой идее 4 Структуры учебной программы по биологии AP ® .Цели обучения, перечисленные в структуре учебной программы, обеспечивают прозрачную основу для курса биологии AP ® , лабораторного опыта на основе запросов, учебных мероприятий и вопросов экзамена AP ® . Цель обучения объединяет требуемый контент с одной или несколькими из семи научных практик.

Большая идея 4 Биологические системы взаимодействуют, и эти системы и их взаимодействия обладают сложными свойствами.
Постоянное понимание 4.A Взаимодействия внутри биологических систем приводят к появлению сложных свойств.
Основные знания 4.A.1 Подкомпоненты биологических молекул и их последовательность определяют свойства этой молекулы.
Научная практика 7,1 Учащийся может связывать явления и модели в пространственных и временных масштабах.
Цель обучения 4,1 Учащийся может уточнить представления и модели, чтобы объяснить, как подкомпоненты биологического полимера и их последовательность определяют свойства этого полимера.
Основные знания 4.A.1 Подкомпоненты биологических молекул и их последовательность определяют свойства этой молекулы.
Научная практика 1.3 Студент может уточнить представления и модели природных или антропогенных явлений и систем в своей области.
Цель обучения 4,2 Учащийся может уточнить представления и модели, чтобы объяснить, как подкомпоненты биологического полимера и их последовательность определяют свойства этого полимера.
Основные знания 4.A.1 Подкомпоненты биологических молекул и их последовательность определяют свойства этой молекулы.
Научная практика 6,1 Студент может обосновать свои претензии доказательствами.
Научная практика 6,4 Студент может делать утверждения и предсказания о природных явлениях на основе научных теорий и моделей.
Цель обучения 4,3 Учащийся может использовать модели для прогнозирования и обоснования того, что изменения в подкомпонентах биологического полимера влияют на функциональность молекул.

Задача «Научная практика» содержит дополнительные тестовые вопросы для этого раздела, которые помогут вам подготовиться к экзамену AP. Эти вопросы касаются следующих стандартов:
[APLO 4.15] [APLO 2.5]

Молекулярные структуры

Большинство людей знакомы с углеводами, одним типом макромолекул, особенно когда речь идет о том, что мы едим. Чтобы похудеть, некоторые люди придерживаются «низкоуглеводной» диеты. Спортсмены, напротив, часто «нагружают углеводы» перед важными соревнованиями, чтобы у них было достаточно энергии для соревнований на высоком уровне.Фактически, углеводы являются неотъемлемой частью нашего рациона; злаки, фрукты и овощи — все это естественные источники углеводов. Углеводы обеспечивают организм энергией, особенно через глюкозу, простой сахар, который является компонентом крахмала и ингредиентом многих основных продуктов питания. Углеводы также выполняют другие важные функции у людей, животных и растений.

Углеводы могут быть представлены стехиометрической формулой (CH 2 O) n , где n — количество атомов углерода в молекуле.Другими словами, соотношение углерода, водорода и кислорода в молекулах углеводов составляет 1: 2: 1. Эта формула также объясняет происхождение термина «углевод»: компоненты — это углерод («углевод») и компоненты воды (отсюда «гидрат»). Углеводы подразделяются на три подтипа: моносахариды, дисахариды и полисахариды.

Моносахариды

Моносахариды (моно- = «один»; sacchar- = «сладкий») представляют собой простые сахара, наиболее распространенным из которых является глюкоза. В моносахаридах количество атомов углерода обычно составляет от трех до семи.Большинство названий моносахаридов оканчиваются суффиксом -ose. Если сахар имеет альдегидную группу (функциональная группа со структурой R-CHO), он известен как альдоза, а если у него есть кетонная группа (функциональная группа со структурой RC (= O) R ‘), он известен как кетоза. В зависимости от количества атомов углерода в сахаре они также могут быть известны как триозы (три атома углерода), пентозы (пять атомов углерода) и / или гексозы (шесть атомов углерода). См. Рисунок 3.5 для иллюстрации моносахаридов.

Рисунок 3.5 Моносахариды классифицируются на основе положения их карбонильной группы и количества атомов углерода в основной цепи. Альдозы имеют карбонильную группу (обозначена зеленым) на конце углеродной цепи, а кетозы имеют карбонильную группу в середине углеродной цепи. Триозы, пентозы и гексозы имеют трех-, пяти- и шестиуглеродные скелеты соответственно.

Химическая формула глюкозы: C 6 H 12 O 6 . У человека глюкоза является важным источником энергии.Во время клеточного дыхания из глюкозы выделяется энергия, которая используется для выработки аденозинтрифосфата (АТФ). Растения синтезируют глюкозу, используя углекислый газ и воду, а глюкоза, в свою очередь, используется для удовлетворения потребностей растений в энергии. Избыточная глюкоза часто хранится в виде крахмала, который катаболизируется (расщепление более крупных молекул клетками) людьми и другими животными, которые питаются растениями.

Галактоза (входит в состав лактозы или молочного сахара) и фруктоза (содержится в сахарозе, во фруктах) — другие распространенные моносахариды.Хотя глюкоза, галактоза и фруктоза имеют одинаковую химическую формулу (C 6 H 12 O 6 ), они различаются структурно и химически (и известны как изомеры) из-за разного расположения функциональных групп вокруг асимметричный углерод; все эти моносахариды имеют более одного асимметричного углерода (рис. 3.6).

Визуальное соединение

Рис. 3.6. Глюкоза, галактоза и фруктоза — это гексозы. Они являются структурными изомерами, то есть имеют одинаковую химическую формулу (C 6 H 12 O 6 ), но другое расположение атомов.

Определите каждый сахар как альдозу или кетозу.
  1. фруктоза
  2. галактоза
  3. глюкоза
  1. Глюкоза и галактоза — альдозы. Фруктоза — это кетоза
  2. Глюкоза и фруктоза — альдозы. Галактоза — это кетоза.
  3. Галактоза и фруктоза относятся к кетозам. Глюкоза — это альдоза.
  4. Глюкоза и фруктоза относятся к кетозам. Галактоза — это альдоза.

Глюкоза, галактоза и фруктоза представляют собой изомерные моносахариды (гексозы), что означает, что они имеют одинаковую химическую формулу, но имеют немного разные структуры.Глюкоза и галактоза — это альдозы, а фруктоза — кетоза.

Моносахариды могут существовать в виде линейной цепи или кольцевых молекул; в водных растворах они обычно находятся в кольцевых формах (рис. 3.7). Глюкоза в кольцевой форме может иметь два разных расположения гидроксильной группы (ОН) вокруг аномерного углерода (углерод 1, который становится асимметричным в процессе образования кольца). Если гидроксильная группа находится под номером углерода 1 в сахаре, говорят, что она находится в положении альфа ( α ), а если она выше плоскости, говорят, что она находится в положении бета ( β ). .

Рис. 3.7 Моносахариды из пяти и шести атомов углерода находятся в равновесии между линейной и кольцевой формами. Когда кольцо образуется, боковая цепь, на которую оно замыкается, фиксируется в положении α или β . Фруктоза и рибоза также образуют кольца, хотя они образуют пятичленные кольца в отличие от шестичленного кольца глюкозы.

Дисахариды

Дисахариды (ди- = «два») образуются, когда два моносахарида подвергаются реакции дегидратации (также известной как реакция конденсации или синтез дегидратации).Во время этого процесса гидроксильная группа одного моносахарида соединяется с водородом другого моносахарида, высвобождая молекулу воды и образуя ковалентную связь. Ковалентная связь, образованная между молекулой углевода и другой молекулой (в данном случае между двумя моносахаридами), известна как гликозидная связь (рис. 3.8). Гликозидные связи (также называемые гликозидными связями) могут быть альфа- или бета-типа.

Рис. 3.8 Сахароза образуется, когда мономер глюкозы и мономер фруктозы соединяются в реакции дегидратации с образованием гликозидной связи.При этом теряется молекула воды. По соглашению атомы углерода в моносахариде нумеруются от концевого углерода, ближайшего к карбонильной группе. В сахарозе гликозидная связь образуется между углеродом 1 в глюкозе и углеродом 2 во фруктозе.

Обычные дисахариды включают лактозу, мальтозу и сахарозу (рис. 3.9). Лактоза — это дисахарид, состоящий из мономеров глюкозы и галактозы. Он содержится в молоке. Мальтоза, или солодовый сахар, представляет собой дисахарид, образующийся в результате реакции дегидратации между двумя молекулами глюкозы.Наиболее распространенным дисахаридом является сахароза или столовый сахар, который состоит из мономеров глюкозы и фруктозы.

Рис. 3.9. Обычные дисахариды включают мальтозу (зерновой сахар), лактозу (молочный сахар) и сахарозу (столовый сахар).

Полисахариды

Длинная цепь моносахаридов, связанных гликозидными связями, известна как полисахарид (поли- = «много»). Цепь может быть разветвленной или неразветвленной, и она может содержать разные типы моносахаридов. Молекулярная масса может составлять 100000 дальтон или более в зависимости от количества соединенных мономеров.Крахмал, гликоген, целлюлоза и хитин являются основными примерами полисахаридов.

Крахмал — это хранимая в растениях форма сахаров, состоящая из смеси амилозы и амилопектина (оба полимера глюкозы). Растения способны синтезировать глюкозу, а избыток глюкозы, превышающий непосредственные потребности растения в энергии, хранится в виде крахмала в различных частях растения, включая корни и семена. Крахмал в семенах обеспечивает питание зародыша во время его прорастания, а также может служить источником пищи для людей и животных.Крахмал, потребляемый людьми, расщепляется ферментами, такими как амилазы слюны, на более мелкие молекулы, такие как мальтоза и глюкоза. Затем клетки могут поглощать глюкозу.

Крахмал состоит из мономеров глюкозы, которые соединены α 1-4 или α 1-6 гликозидными связями. Цифры 1-4 и 1-6 относятся к числу атомов углерода двух остатков, которые соединились с образованием связи. Как показано на рисунке 3.10, амилоза представляет собой крахмал, образованный неразветвленными цепями мономеров глюкозы (только α 1-4 связей), тогда как амилопектин представляет собой разветвленный полисахарид ( α 1-6 связей в точках ветвления).

Рис. 3.10 Амилоза и амилопектин — две разные формы крахмала. Амилоза состоит из неразветвленных цепей мономеров глюкозы, соединенных α 1,4 гликозидными связями. Амилопектин состоит из разветвленных цепей мономеров глюкозы, соединенных α 1,4 и α 1,6 гликозидными связями. Из-за способа соединения субъединиц цепи глюкозы имеют спиральную структуру. Гликоген (не показан) похож по структуре на амилопектин, но более разветвлен.

Поддержка учителей

  • Получите копии метаболических диаграмм и используйте их, чтобы проиллюстрировать студентам связь между углеводным обменом, производством и распадом липидов и аминокислот. Попросите учащихся проследить молекулу глюкозы через ее метаболизм и определить точки связи между путями макромолекул. Спросите студентов, что происходит, когда перерабатывается избыток сахара на молекулярном уровне.
  • Попросите класс исследовать опасности избыточного потребления углеводов, включая возможные опасности для здоровья.Предложите им изучить состояние, имеющее отношение к их семье.
  • Углеводы или сахара — это не только столовый сахар. Все они имеют основную формулу CH 2 O. Соотношение углерода, водорода и кислорода всегда одинаково. Количество атомов углерода определяет категорию сахара. Биологические сахара обычно представляют собой пентозы (5 атомов углерода или C 5 H 10 O 5 ) или гексозы (6 атомов углерода или C 6 H 12 O 6 ).
  • Моносахариды являются строительными блоками всех сахаров.Если объединить два, они представляют собой дисахариды; если их объединить более двух, они образуют большую молекулу, называемую полисахаридом. Тип связи между мономерами определяет, могут ли животные их переваривать. Если кислород, связывающий мономеры, ориентирован вниз по отношению к обоим соседним атомам углерода, это называется альфа-связью и может перевариваться. Если атом кислорода ориентирован вверх по отношению к одному углероду и вниз по отношению к следующему, это называется бета-связью и не может перевариваться пищеварительными ферментами животных.
  • В Соединенных Штатах люди потребляют большое количество углеводов, часто в виде сахаров. При расщеплении углеводы являются непосредственным источником энергии. Они также участвуют в метаболизме других типов макромолекул. Сахара могут быть преобразованы в ряд аминокислот, нуклеиновых кислот и жиров, если это необходимо организму.

Гликоген — это форма хранения глюкозы у людей и других позвоночных, состоящая из мономеров глюкозы. Гликоген является животным эквивалентом крахмала и представляет собой сильно разветвленную молекулу, обычно хранящуюся в клетках печени и мышц.Когда уровень глюкозы в крови снижается, гликоген расщепляется с высвобождением глюкозы в процессе, известном как гликогенолиз.

Целлюлоза — самый распространенный природный биополимер. Клеточная стенка растений в основном состоит из целлюлозы; это обеспечивает структурную поддержку клетки. Дерево и бумага в основном целлюлозные по своей природе. Целлюлоза состоит из мономеров глюкозы, которые связаны β 1-4 гликозидными связями (рис. 3.11).

Рис. 3.11. В целлюлозе мономеры глюкозы связаны в неразветвленные цепи β 1-4 гликозидными связями.Из-за способа соединения субъединиц глюкозы каждый мономер глюкозы переворачивается относительно следующего, что приводит к линейной волокнистой структуре.

Как показано на рисунке 3.11, каждый второй мономер глюкозы в целлюлозе перевернут, и мономеры плотно упакованы в виде вытянутых длинных цепей. Это придает целлюлозе жесткость и высокую прочность на разрыв, что так важно для растительных клеток. Хотя связь β 1-4 не может быть разрушена пищеварительными ферментами человека, травоядные животные, такие как коровы, коалы и буйволы, способны с помощью специализированной флоры в их желудке переваривать растительный материал, богатый целлюлозой. и использовать его как источник пищи.У этих животных определенные виды бактерий и простейших обитают в пищеварительной системе травоядных и секретируют фермент целлюлазу. В аппендиксе пасущихся животных также содержатся бактерии, переваривающие целлюлозу, что придает ей важную роль в пищеварительной системе некоторых жвачных животных. Целлюлазы могут расщеплять целлюлозу на мономеры глюкозы, которые могут использоваться животным в качестве источника энергии. Термиты также способны расщеплять целлюлозу из-за присутствия в их телах других организмов, выделяющих целлюлазы.

Углеводы выполняют различные функции у разных животных. Членистоногие (насекомые, ракообразные и другие) имеют внешний скелет, называемый экзоскелетом, который защищает их внутренние части тела (как видно на пчеле на рис. 3.12). Этот экзоскелет состоит из биологической макромолекулы хитина, который представляет собой азотсодержащий полисахарид. Он состоит из повторяющихся единиц N-ацетил- β -d-глюкозамина, модифицированного сахара. Хитин также является основным компонентом клеточных стенок грибов; грибы не являются ни животными, ни растениями и образуют собственное царство в области Эукарии.

Рис. 3.12. У насекомых есть твердый внешний скелет, сделанный из хитина, типа полисахарида. (кредит: Луиза Докер)

Связь с карьерой

Зарегистрированные диетологи помогают планировать программы питания для людей в различных условиях. Они часто работают с пациентами в медицинских учреждениях, разрабатывая планы питания для лечения и профилактики заболеваний. Например, диетологи могут научить пациента с диабетом контролировать уровень сахара в крови, употребляя в пищу правильные типы и количества углеводов.Диетологи также могут работать в домах престарелых, школах и частных клиниках.

Чтобы стать дипломированным диетологом, нужно получить как минимум степень бакалавра в области диетологии, питания, пищевых технологий или в смежных областях. Кроме того, зарегистрированные диетологи должны пройти программу стажировки под присмотром и сдать национальный экзамен. Те, кто занимается диетологией, проходят курсы по питанию, химии, биохимии, биологии, микробиологии и физиологии человека. Диетологи должны стать экспертами в области химии и физиологии (биологических функций) пищи (белков, углеводов и жиров).

Преимущества углеводов

Полезны ли углеводы? Некоторые люди считают, что углеводы вредны для них и их следует избегать. Некоторые диеты полностью запрещают потребление углеводов, утверждая, что низкоуглеводная диета помогает людям быстрее похудеть. Однако углеводы были важной частью рациона человека на протяжении тысячелетий; артефакты древних цивилизаций свидетельствуют о наличии пшеницы, риса и кукурузы в хранилищах наших предков.

Углеводы следует дополнять белками, витаминами и жирами, чтобы они были частью хорошо сбалансированной диеты.С точки зрения калорийности грамм углеводов обеспечивает 4,3 ккал. Для сравнения, жиры дают 9 Ккал / г, менее желательное соотношение. Углеводы содержат растворимые и нерастворимые элементы; нерастворимая часть известна как клетчатка, которая в основном состоит из целлюлозы. Волокно имеет множество применений; он способствует регулярному опорожнению кишечника за счет увеличения объема и регулирует скорость потребления глюкозы в крови. Клетчатка также помогает удалить излишки холестерина из организма: клетчатка связывается с холестерином в тонком кишечнике, затем присоединяется к холестерину и предотвращает попадание частиц холестерина в кровоток, а затем холестерин выходит из организма через кал.Кроме того, еда, содержащая цельнозерновые и овощи, дает ощущение сытости. В качестве непосредственного источника энергии глюкоза расщепляется в процессе клеточного дыхания, в результате чего образуется АТФ, энергетическая валюта клетки. Без потребления углеводов доступность «мгновенной энергии» была бы уменьшена. Некоторым людям может потребоваться исключение углеводов из рациона, но такой шаг может оказаться полезным не для всех.

Ссылка на обучение

Чтобы получить дополнительную информацию об углеводах, изучите «Биомолекулы: углеводы» с помощью этой интерактивной анимации.

Клетчатка на самом деле не является питательным веществом, потому что она проходит через наш организм непереваренной. Почему клетчатка не переваривается и почему она важна для нашей диеты?

  1. Ферменты, необходимые для переваривания целлюлозы, в организме человека не производятся; непереваренная клетчатка увеличивает объем пищи, облегчая опорожнение кишечника.
  2. Ферменты, переваривающие целлюлозу, не могут связываться с целлюлозой из-за изменения активных центров; непереваренная клетчатка увеличивает объем пищи, облегчая опорожнение кишечника.
  3. Ферменты, необходимые для переваривания целлюлозы, в организме человека не производятся; клетчатка производит энергию для обмена веществ.
  4. Конкурентные ингибиторы не являются причиной неперевариваемости клетчатки.

Подключение к научной практике для курсов AP®

Активность

Используйте набор молекулярных моделей, чтобы сконструировать полисахарид из нескольких различных мономеров моносахаридов. Объясните, как структура полисахарида определяет его основную функцию как молекулы хранения энергии.Затем используйте свою модель, чтобы описать, как изменения в структуре приводят к изменениям в функциях.

Подумай об этом
  • Объясните, почему спортсмены часто «загружают углеводы» перед большой игрой или турниром.
  • Объясните, почему некоторым животным, в том числе людям, трудно переваривать целлюлозу. Опишите структурную разницу между целлюлозой и крахмалом, который легко усваивается человеком. Как коровы и другие жвачные животные могут переваривать целлюлозу?

Поддержка учителей

Это упражнение является приложением Цели обучения 4.1 и научная практика 7.1 и цель обучения 4.3 и научная практика 6.1 и 6.4, потому что студенты сначала создают модель, чтобы показать связь между структурой и функцией на молекулярном уровне, а затем используют модель, чтобы предсказать, как изменения в структуре на молекулярном уровне могут повлиять на свойства и функции молекулы.

Первый вопрос «Подумай об этом» — это применение Цели обучения 4.1 и Научной практики 7.1, потому что студенты связывают структуру молекулы с ее функцией.

Второй вопрос «Подумай об этом» — это применение Цели обучения 4.1 и Научной практики 7.1, а также Задачи обучения 4.2 и Научной практики 1.3, потому что учащиеся используют представления о структурных особенностях молекул для объяснения взаимосвязи между их структурой и функцией свойств (s ).

Органические соединения

Химические соединения живых существ известны как органические соединения из-за их связи с организмами и потому, что они являются углеродсодержащими соединениями.Органические соединения, которые представляют собой соединения, связанные с жизненными процессами, являются предметом органической химии. Среди многочисленных типов органических соединений во всем живом есть четыре основные категории: углеводы, липиды, белки и нуклеиновые кислоты.

Углеводы

Почти все организмы используют углеводов в качестве источников энергии. Кроме того, некоторые углеводы служат конструкционными материалами. Углеводы — это молекулы, состоящие из углерода, водорода и кислорода; отношение атомов водорода к атомам кислорода и углерода составляет 2: 1.

Простые углеводы, обычно называемые сахарами , могут быть моносахаридами, , если они состоят из одиночных молекул, или дисахаридами, , если они состоят из двух молекул. Самый важный моносахарид — это глюкоза, углевод с молекулярной формулой C 6 H 12 O 6 . Глюкоза — это основная форма топлива для живых существ. В многоклеточных организмах он растворим и транспортируется жидкостями организма ко всем клеткам, где метаболизируется, чтобы высвободить свою энергию.Глюкоза является исходным материалом для клеточного дыхания и основным продуктом фотосинтеза (см. Главы 5 и 6).

Три важных дисахарида также содержатся в живых организмах: мальтоза, сахароза и лактоза. Мальтоза представляет собой комбинацию двух ковалентно связанных единиц глюкозы. Сахароза столового сахара образуется путем связывания глюкозы с другим моносахаридом, называемым фруктозой. (Рисунок 2-2 показывает, что при синтезе сахарозы образуется молекула воды. Поэтому процесс называется реакцией дегидратации . Обратный процесс — это гидролиз, процесс, в котором молекула расщепляется и добавляется вода.) Лактоза состоит из единиц глюкозы и галактозы.

Рисунок 2-2 Молекулы глюкозы и фруктозы объединяются, образуя дисахарид сахарозу.

Сложные углеводы известны как полисахариды . Полисахариды образуются путем связывания бесчисленных моносахаридов. Среди наиболее важных полисахаридов — крахмал, который состоит из сотен или тысяч единиц глюкозы, связанных друг с другом.Крахмал служит формой хранения углеводов. Большая часть населения мира удовлетворяет свои потребности в энергии с помощью крахмала в виде риса, пшеницы, кукурузы и картофеля.

Два других важных полисахарида — это гликоген и целлюлоза. Гликоген также состоит из тысяч единиц глюкозы, но эти единицы связаны другим образом, чем в крахмале. Гликоген — это форма, в которой глюкоза хранится в печени человека. Целлюлоза используется в основном как структурный углевод.Он также состоит из единиц глюкозы, но единицы не могут высвобождаться одна из другой, за исключением нескольких видов организмов. Древесина состоит в основном из целлюлозы, как и стенки растительных клеток. Хлопчатобумажная ткань и бумага — это товарные целлюлозные продукты.

Липиды

Липиды — это органические молекулы, состоящие из атомов углерода, водорода и кислорода. Отношение атомов водорода к атомам кислорода в липидах намного выше, чем в углеводах. Липиды включают стероиды (материал, из которого состоят многие гормоны), воски и жиров.

Молекулы жира состоят из молекулы глицерина и одной, двух или трех молекул жирных кислот (см. Рис. 2-3). Молекула глицерина содержит три гидроксильные (–ОН) группы. Жирная кислота представляет собой длинную цепочку атомов углерода (от 4 до 24) с карбоксильной (–COOH) группой на одном конце. Все жирные кислоты в жире могут быть одинаковыми или разными. Они связаны с молекулой глицерина в процессе удаления воды.

Некоторые жирные кислоты имеют в своих молекулах одну или несколько двойных связей.Жиры, в состав которых входят эти молекулы, представляют собой ненасыщенных жиров. Другие жирные кислоты не имеют двойных связей. Жиры, в состав которых входят эти жирные кислоты, представляют собой насыщенных жира. В большинстве случаев, связанных со здоровьем человека, потребление ненасыщенных жиров предпочтительнее насыщенных жиров.

Жиры, хранящиеся в клетках, обычно образуют прозрачные масляные капли, называемые шариками , потому что жиры не растворяются в воде. Растения часто хранят жиры в своих семенах, а животные — в больших прозрачных шариках в клетках жировой ткани.Жиры в жировой ткани содержат много концентрированной энергии. Следовательно, они служат резервным источником энергии для организма. Фермент липаза расщепляет жиры на жирные кислоты и глицерин в пищеварительной системе человека.

Рисунок 2-3 Молекула жира создается путем объединения молекулы глицерина с тремя молекулами жирных кислот. (Две насыщенные жирные кислоты и одна ненасыщенная жирная кислота показаны для сравнения.) Сконструированная молекула находится внизу.

Белки

Белки, среди самых сложных из всех органических соединений, состоят из аминокислот (см. Рис. 2-4), которые содержат атомы углерода, водорода, кислорода и азота.Некоторые аминокислоты также содержат атомы серы, фосфора или других микроэлементов, таких как железо или медь.

Рисунок 2-4 Структура и химический состав аминокислот. Когда две аминокислоты соединяются в дипептид, –OH одной аминокислоты удаляется, а –H второй удаляется. Итак, вода удалена. Дипептидная связь (справа) образует соединение аминокислот вместе.

Многие белки огромны и чрезвычайно сложны. Однако все белки состоят из длинных цепочек относительно простых аминокислот.Есть 20 видов аминокислот. Каждая аминокислота (см. Левую иллюстрацию на рис. 2-4) имеет амино (–NH 2 ) группу, карбоксильную (–COOH) группу и группу атомов, называемую –R группой (где R обозначает радикал ). Аминокислоты различаются в зависимости от природы группы –R, как показано на средней иллюстрации рисунка 2-4. Примерами аминокислот являются аланин, валин, глутаминовая кислота, триптофан, тирозин и гистидин.

Удаление молекул воды связывает аминокислоты с образованием белка.Процесс называется дегидратационным синтезом , и побочным продуктом синтеза является вода. Связи между аминокислотами составляют пептидных связей, и небольшие белки часто называют пептидами.

Все живое зависит от белков. Белки — это основные молекулы, из которых построены живые существа. Некоторые белки растворены или взвешены в водянистом веществе клеток, а другие включены в различные структуры клеток.Белки также являются поддерживающими и укрепляющими материалами в тканях вне клеток. Кости, хрящи, сухожилия и связки состоят из белков.

Одна из важнейших функций белков — это фермент. Ферменты катализируют химические реакции, происходящие в клетках. Они не расходуются в реакции; скорее, они остаются доступными для катализа последующих реакций.

Каждый вид производит белки, уникальные для этого вида. Информация для синтеза уникальных белков находится в ядре клетки.Так называемый генетический код определяет аминокислотную последовательность в белках. Следовательно, генетический код регулирует химию, происходящую внутри клетки. Белки также могут служить резервным источником энергии для клетки. Когда аминогруппа удаляется из аминокислоты, полученное соединение богато энергией.

Нуклеиновые кислоты

Как и белки, нуклеиновых кислот — очень большие молекулы. Нуклеиновые кислоты состоят из более мелких единиц, называемых нуклеотидами. Каждый нуклеотид содержит молекулу углевода (сахар), фосфатную группу и азотсодержащую молекулу, которая в силу своих свойств является азотистым основанием .

У живых организмов есть две важные нуклеиновые кислоты. Один тип — это дезоксирибонуклеиновая кислота , ДНК или . Другой — это рибонуклеиновая кислота, или РНК. ДНК находится в основном в ядре клетки, в то время как РНК обнаруживается как в ядре, так и в цитоплазме , — полужидкое вещество, составляющее объем клетки (см. Главу 3).

ДНК и РНК

отличаются друг от друга по своим компонентам. ДНК содержит углевод дезоксирибозу, а РНК — рибозу. Кроме того, ДНК содержит тимин, а РНК — урацил. Структура ДНК и ее значение в жизни клеток рассматриваются в главе 10.

Определение и примеры углеводов — Биологический онлайн-словарь

Углеводы
существительное
множественное число: углеводы
[car · bo · hy · drate, kɑːbəʊˈhaɪdɹeɪt]
Определение: любое из группы органических соединений, состоящих из углерода, водорода, и кислород, обычно в соотношении 1: 2: 1, отсюда общая формула: C n (H 2 O) n

Определение углеводов

Биомолекула относится к любой молекуле, которая производится живыми организмами. организмы.Таким образом, большинство из них являются органическими молекулами. Четыре основные группы биомолекул включают аминокислоты и белки, углеводы (особенно полисахариды), липиды и нуклеиновые кислоты. Углевод относится к любой группе органических соединений, состоящей из углерода, водорода и кислорода, обычно в соотношении 1: 2: 1, отсюда общая формула: C n (H 2 O) n . Углеводы являются наиболее распространенными среди основных классов биомолекул.

Углеводы (биологическое определение): любое из группы органических соединений, состоящих из углерода, водорода и кислорода, обычно в соотношении 1: 2: 1, отсюда общая формула: C n (H 2 О) н. . Синонимы: сахарид, карб.

Характеристики углеводов

Углеводы — это органические соединения. Органическое соединение — это соединение, которое, как правило, содержит углерод, ковалентно связанный с другими атомами, особенно углерод-углерод (C-C) и углерод-водород (C-H). Углеводы являются примером многих типов органических соединений. Его четыре основных составляющих элемента — это углерод, водород, кислород и азот. Большинство из них следуют общей формуле: C n (H 2 O) n , откуда они и получили свое название, углеводы (что означает гидратов углерода ).Это потому, что отношение атомов водорода к атомам кислорода часто составляет 2: 1. Однако не все углеводы соответствуют этой формуле. По сути, это органические соединения, которые представляют собой альдегиды или кетоны с добавлением многих гидроксильных групп, обычно на каждый атом углерода, не являющийся частью функциональной группы альдегида или кетона.

Углеводы — это биомолекулы, богатые энергией . Они являются одними из основных питательных веществ, необходимых многим живым организмам, поскольку обеспечивают организм источником химической энергии.АТФ — это химическая энергия, вырабатываемая в ходе метаболических процессов клеточного дыхания. Вкратце, глюкоза (моносахарид) «сбивается» для извлечения энергии, в первую очередь, в форме АТФ. Во-первых, ряд реакций приводит к превращению глюкозы в пируват. Затем он использует пируват, превращая его в ацетилкофермент А для окисления посредством циклической реакции, управляемой ферментами, которая называется цикл Кребса . Наконец, каскад реакций ( окислительно-восстановительных реакций, ) с участием цепи переноса электронов приводит к производству АТФ (посредством хемиосмоса). 1 Молекулы глюкозы, используемые в гликолизе, получены из углеводсодержащей диеты. Сложные углеводы расщепляются на более простые моносахариды, такие как глюкоза, путем осахаривания во время пищеварения.
Углеводы — один из основных источников питания животных, в том числе человека. Однако многие другие углеводы находятся в форме волокон. И как клетчатка, она не переваривается людьми. Обычно волокнистые углеводы включают слизь, пектины, камеди и нерастворимые компоненты, такие как те, что содержатся в лигнине и целлюлозе.Жвачные животные, такие как крупного рогатого скота , овцы , олени и козы , способны переваривать растительные материалы, которые в противном случае неперевариваются человеком. Некоторые симбиотические бактерии (например, Ruminococcus , Fibrobacter , Streptococcus , Escherichia ) обитают в их рубце, которые могут разлагать целлюлозные материалы до более простых углеводов для жвачных животных.

Классификация углеводов

Многие углеводы представляют собой полимеры .Полимер — это соединение, состоящее из нескольких повторяющихся звеньев ( мономеров ) или протомеров и полученное путем полимеризации . Сахарид — структурная (мономерная) единица углеводов. Углеводы можно разделить на моносахаридов , дисахаридов , олигосахаридов и полисахаридов на основе количества сахаридных единиц.
Самый фундаментальный тип — это простые сахара, называемые моносахаридами .Эти простые сахара могут сочетаться друг с другом, образуя более сложные типы. Примерами являются глюкоза , галактоза и фруктоза . Комбинация двух простых сахаров называется дисахаридом . Примерами являются сахароза , мальтоза и лактоза . Углеводы, состоящие из трех-десяти простых сахаров, называются олигосахаридами . Примерами являются рафиноза , мальтотриоза и мальтотетраоза .Углеводы, состоящие из нескольких сахаридных единиц, называются полисахаридами . Когда полисахарид состоит из сахаридных единиц одного и того же типа, он упоминается как гомополисахарид (или гомогликан), тогда как полисахарид состоит из более чем одного типа сахаридов, он называется гетерополисахаридом (или гетерогликаном). Примерами полисахаридов являются крахмал , целлюлоза и гликоген .
С точки зрения питания углеводы делятся на две основные группы пищевых продуктов: простые и сложные . Простые углеводы — иногда называемые просто «сахаром» — это те углеводы, которые легко перевариваются и служат быстрым источником энергии. Сложные углеводы — это те углеводы, которым требуется больше времени для переваривания и метаболизма. Они часто богаты клетчаткой и, в отличие от простых углеводов, с меньшей вероятностью вызывают скачки сахара в крови.

Функции углеводов

Как отмечалось ранее, одна из основных функций углеводов — обеспечивать организм энергией.В частности, моносахариды являются основным источником энергии для обмена веществ. Когда они еще не нужны, они превращаются в полисахариды, запасающие энергию, такие как крахмал у растений и гликоген у животных.

В растениях крахмал присутствует в большом количестве в амилопластах внутри клеток различных органов растений, например плоды, семена, корневища и клубни. У животных гликоген хранится в печени и мышечных клетках.
Кроме того, углеводы также являются важными структурными компонентами.

На клеточном уровне полисахариды (например, целлюлоза ) являются составными частями клеточных стенок клеток растений и многих водорослей . Клетки без клеточных стенок более подвержены структурным и механическим повреждениям. У растений клеточная стенка предотвращает разрыв клетки в гипотоническом растворе.

Осмотическое давление заставляет воду диффундировать в клетку. Стенка клетки сопротивляется осмотическому давлению и тем самым предотвращает разрыв клетки.

В стенках бактериальных клеток структурный углевод является мышиным, тогда как в грибах полисахарид хитин является компонентом клеточной стенки.У некоторых бактерий есть полисахаридная «капсула», которая помогает им уклоняться от обнаружения иммунными клетками. У некоторых животных есть хитиновые экзоскелеты, которые обеспечивают силу и защиту мягкотелым животным.

Нуклеиновые кислоты, такие как РНК и ДНК, содержат сахарный компонент, то есть рибозу и дезоксирибозу соответственно. Многие другие биологические молекулы также содержат сахарные компоненты, такие как гликопротеины, гликолипиды, протеогликаны, которые, в свою очередь, выполняют жизненно важные роли, например в иммунном ответе, детоксикации, свертывании крови, оплодотворении, биологическом распознавании, и т. д. .

Общие биологические реакции с участием углеводов

Ниже приведены некоторые из общих биологических реакций с участием углеводов.

Фотосинтез

У растений и других фотосинтезирующих автотрофов синтез простых сахаров (например, глюкозы) осуществляется посредством фотосинтеза . В этом процессе используются углекислый газ, вода, неорганические соли и световая энергия (от солнечного света), захваченная светопоглощающими пигментами, такими как хлорофилл и другие вспомогательные пигменты, для производства молекул глюкозы, воды и кислорода.

Процесс фотосинтеза

Дегидратационный синтез

Моносахарид образует углеводы, соединяясь в гликозидные связи посредством процесса, называемого дегидратационным синтезом . Например, при образовании дисахарида соединение двух моносахаридов приводит к выделению воды в качестве побочного продукта. Точно так же полисахариды образуются из длинной цепи моносахаридных единиц в процессе дальнейшей дегидратации. Образующиеся крахмал и гликоген служат молекулами, богатыми энергией.Эти сложные углеводы расщепляются на более простые формы (например, глюкозу), когда организму требуется больше энергии. Этот процесс называется осахариванием.

Осахаривание

Процесс, при котором сложные углеводы разлагаются до более простых форм, таких как глюкоза, называется осахариванием. Это влечет за собой гидролиз . У людей и других высших животных это связано с ферментативным действием. Во рту глюкозосодержащие сложные углеводы расщепляются на более простые формы под действием амилазы слюны.В тонком кишечнике продолжается переваривание сложных углеводов. Ферменты, такие как мальтаза , лактаза и сахараза , расщепляют дисахариды на моносахаридные составляющие. Глюкозидазы представляют собой другую группу ферментов, которые катализируют удаление концевой глюкозы из полисахарида, состоящего в основном из длинных цепей глюкозы.

Ассимиляция

Моносахариды из переваренных углеводов абсорбируются эпителиальными клетками тонкого кишечника.Клетки забирают их из просвета кишечника через систему симпорта иона натрия-глюкозы (через транспортеры глюкозы или GluT). GluT — это белки, облегчающие транспортировку моносахаридов, таких как глюкоза, в клетку. Затем они высвобождаются в капилляры посредством облегченной диффузии . Клетки тканей снова забирают их из кровотока через GluT. Находясь внутри клетки, глюкоза фосфорилируется, чтобы удерживать ее внутри клетки. В результате глюкозо-6-фосфат может использоваться в любом из следующих метаболических путей: (1) гликолиз, чтобы синтезировать химическую энергию, (2) гликогенез, когда глюкоза доставляется в печень через портовые вены, чтобы быть хранится в виде клеточного гликогена , или (3) пентозофосфатный путь для образования НАДФН для синтеза липидов и пентоз для синтеза нуклеиновых кислот.

Клеточное дыхание

Глюкоза метаболизируется клеткой в ​​процессе, называемом клеточное дыхание . Основными этапами или процессами клеточного дыхания являются (1) гликолиз, (2) цикл Кребса и (3) окислительное фосфорилирование. На начальной стадии (т.е. гликолиз ) серия реакций в цитозоле приводит к превращению моносахарида, часто глюкозы, в пируват и сопутствующему производству относительно небольшого количества высокоэнергетических биомолекул, таких как АТФ. .Также производится НАДН, молекула, несущая электрон . В присутствии достаточного количества кислорода пируват в результате гликолиза превращается в органическое соединение, которое полностью окисляется внутри митохондрии. Электронные носители (например, NADH и FADH 2 ) перемещают электроны вниз по цепи переноса электронов . По всей цепи происходит серия окислительно-восстановительных реакций, которая завершается образованием конечного акцептора электронов , то есть молекулярного кислорода. Больше АТФ производится посредством механизма сцепления через хемиосмос во внутренней митохондриальной мембране.

Из одного только гликолиза чистый АТФ равен двум (из-за фосфорилирования на уровне субстрата). При окислительном фосфорилировании чистый АТФ составляет примерно 34. Таким образом, общий чистый АТФ на глюкозу составляет примерно 36. 2 При отсутствии или недостаточности кислорода происходит анаэробный катаболизм (например, при ферментации). Ферментация — это анаэробный процесс, при котором в результате гликолиза образуется АТФ. Однако вместо того, чтобы перемещать электроны в цепи переноса электронов, НАДН передает электроны пирувату, восстанавливая НАД + , который поддерживает гликолиз. 2 Общее количество АТФ, произведенных на глюкозу в результате ферментации, составляет всего около двух.

Читать: Клеточное дыхание — Гликолиз

Глюконеогенез

Глюконеогенез кажется обратным гликолизу: глюкоза превращается в пируват, тогда как при глюконеогенезе пируват превращается в глюкозу. По сути, глюконеогенез — это метаболический процесс, при котором глюкоза образуется из неуглеводных предшественников, например пируват , лактат , глицерин и глюкогенные аминокислоты .У человека и многих других позвоночных глюконеогенез происходит в основном в клетках печени. Это часто происходит во время голодания, низкоуглеводных диет или интенсивных упражнений. Цитологически процесс начинается в митохондриях, затем заканчивается в просвете эндоплазматической сети. Глюкоза, образованная при гидролизе глюкозо-6-фосфата ферментом глюкозо-6-фосфатазой, перемещается из эндоплазматического ретикулума в цитоплазму.

Гликогенез

Гликогенез — это метаболический процесс производства гликогена из глюкозы для хранения, главным образом, в клетках печени и мышц в ответ на высокие уровни глюкозы в кровотоке.Короткие полимеры глюкозы, особенно экзогенная глюкоза , превращаются в длинные полимеры, которые хранятся внутри клеток, главным образом в печени и мышцах. Когда организму требуется метаболическая энергия, гликоген расщепляется на субъединицы глюкозы в процессе гликогенолиза. Таким образом, гликогенез — это процесс , противоположный процессу гликогенолиза .

Гликогенолиз

Гликогенолиз — это процесс расщепления накопленного гликогена в печени, чтобы глюкоза могла быть произведена для использования в энергетическом обмене.Накопленный в клетках печени гликоген расщепляется на предшественники глюкозы. Отдельная молекула глюкозы отсекается от гликогена и превращается в глюкозо-1-фосфат , который, в свою очередь, превращается в глюкозо-6-фосфат , который может участвовать в гликолизе .

Пентозофосфатный путь

Пентозофосфатный путь — это путь метаболизма глюкозы, в котором пятиуглеродные сахара (пентозы) и НАДФН синтезируются в цитозоле.Путь пентозофосфата служит альтернативным метаболическим путем при расщеплении глюкозы. У животных это происходит в печени, коре надпочечников, жировой ткани, семенниках и т. Д. Этот путь является основным путем метаболизма нейтрофилов. Таким образом, врожденная недостаточность этого пути вызывает чувствительность к инфекции. У растений часть этого пути участвует в образовании гексоз из углекислого газа в процессе фотосинтеза.

Путь Лелуара (метаболизм галактозы)

В этом метаболическом пути галактоза вступает в гликолиз, сначала фосфорилируясь с помощью фермента галактокиназы , а затем превращаясь в глюкозо-6-фосфат .Галактоза производится из лактозы (молочный сахар, состоящий из молекулы глюкозы и молекулы галактозы).

Фруктозо-1-фосфатный путь

В этом метаболическом пути фруктоза вместо глюкозы вступает в гликолиз. Тем не менее, перед гликолизом фруктозе необходимы дополнительные действия. У животных это происходит в мышцах, жировой ткани и почках.

Глюкорегуляция

Правильный метаболизм углеводов необходим для правильного усвоения и катаболизма углеводов в организме.Поддержание стабильного уровня глюкозы в организме называется глюкорегуляцией . Гормоны поджелудочной железы, такие как инсулин и глюкагон, регулируют правильный метаболизм глюкозы. Уровень сахара в крови означает количество глюкозы, циркулирующей в организме. Когда уровень глюкозы в крови низкий, глюкагон высвобождается. И наоборот, высокий уровень глюкозы в крови стимулирует высвобождение инсулина. Инсулин регулирует метаболизм углеводов (а также жиров), способствуя захвату глюкозы из кровотока в скелетные мышцы и жировые ткани, которые хранятся в виде гликогена для последующего использования в гликогенолизе.Глюкагон, в свою очередь, стимулирует производство сахара. В частности, он заставляет хранящийся в печени гликоген превращаться в глюкозу, которая попадает в кровоток.
Неправильный углеводный обмен может привести к определенным метаболическим заболеваниям или нарушениям, например сахарный диабет, непереносимость лактозы, галактоземия, болезнь накопления гликогена и мальабсорбция фруктозы.

Попробуйте ответить на приведенный ниже тест, чтобы проверить, что вы узнали об углеводах.

Следующий .

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *